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ABSTRACT

An iterative digital computer method for determining the optimal

control function is developed and tested. The class of problem

treated is fixed time fuel-optimal control of a linear time-invariant

plant to a given point. A sequence of suboptimal controls is pro-

duced each of which is efficient in use of fuel and does not require

the fast switching time of the optimal control. Convergence of the

method is proven under suitable assumptions. A Fortran program

is given and computer results are presented for a number of examples.

These examples illustrate the usefulness of the method. Ways of

extending the method to other classes of problems are outlined.
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CHAPTER I

INTRODUCTION

In this chapter the motivation and overall idea of the thesis are

given. The purpose is to show how this computational method relates

to previous work in the field. The design aims used are specified, and

it is shown how the computational method was derived. Some conclu-

sions are drawn from the experimental results. Finally, the author's

opinion of the contributions of the thesis is stated.

The problem examined is fixed time fuel optimal control of a linear

time invariant plant to a given state. Minimizing the total fuel used is of

significance in many problems. One example is space flight in which the

quantity of propellant used must be kept low. Another example is a chem-

ical process in which the fuel could be the quantity of a certain chemical

used or the number of kilowatt hours of power consumed.

For a brief treatment of the thesis work, it might be well to read

Chapters I, If, and VI first. These chapters give the principal problem

treated and the main idea. Chapterlll then shows the important theoreti-

cal results and Chapters IV and V describe the computer work. Finally,

Chapter VII outlines how a more difficult problem is attacked, and

Chapter VIII indicates a number of extensions of the work.

A. BACKGROUND

Man has an innate desire to do things in a better way, or hopefully,

in the best possible way. So the history of optimization methods is a very

long one, with roots lost in antiquity. Instead of a listing of ancient work

on optimization, just three landmarks will be mentioned as having direct

bearing on the present study. The first is the invention of the (ordinary)

calculus in the Seventeenth Century by Newton and Leibnitz. Besides solv-

a great many problems, the calculus led to a very basic necessary condi-

tion for any extreme value of an analytic function. This condition (the

vanishing of the first derivative) is still in use in many forms today. The

second landmark is the use of modern, high-speed computers to obtain

numerical solutions. With this tool one can attack problems too complex

or too long for reasonable hand calculations.

Since Newton's method will be used in what follows it seems ap-

propriate to add a historical note about it here. The first recorded

papers available today are those byNewton. 75'76 He applied the method

-1-
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to finding the roots of polynomials in one or more dimensions, and in-
cluded a prin_itive proof of conditions for convergence of the method.75

Even Newton stated that the method might already be in use, _:-"but he is

credited as its founder. Moore, in Reference 2, says the method has a

long history with contributions by Cauchy, Runge, Faber, and Blutel.

For a summary of the modern method, see Appendix B.

Newton's method is used as a part of several computational meth-

ods for finding optimal controls, such as those of McReynolds and
68 58 82 56

Bryson, Knudsen, Plant, and Kleinman. As a computational

scheme in itself, Newton's method has been widely talked about and

applied recently. 12' 16, 17,28,30,42,60,66,69,89,94 The main reason

seems to be its rapid convergence. It is usually a surprise to some-

one used to slower methods to watch Newton's method zip right in to the

answer: First one significant digit becomes correct, the next iteration

two are correct, the next iteration four are correct, and the next iter-

ation is as close as you can get with a 30-bit computer word length.

B. SUMMARY OF ITERATIVE METHODS

From this point on it is assumed that the optimization problem

can be stated in a mathematical format such as that of Problem 1 of

Chapter II or Problem 2 of Chapter VII. The performance criterion J

is assumed to be additive. Then there are a number of approaches used

for finding numerical solutions. Some of these are listed and/or de-

scribed briefly below, starting with the most direct methods and pro-

ceeding to some more indirect methods. This is just a summary:

much more complete lists can be found for instance in References 77,

79, 5, and 4.

1. The most straightforward way to compute an optimum solution

is to search through the entire set of possible solutions, comparing the

resulting values of performance to find the best one. In practice the

set is scanned by using a discrete net of solutions. This assumes that

two solutions "close" to each other in some valid distance function (see

Appendix A) will also be close to each other in performance. The dis-

"27. Whether this method of resolving equations be vulgarly prac-

tised I cannot tell, but surely to me it appears simple in compar-

ison of others, and more accommodated to practice. "
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crete net of solution points to be evaluated can be chosen by either de-

terministic or random means. There are many recent references on
the random or Monte Carlo method. For a simple introduction see

31
e.g., Froberg.

2. A more sophisticated approach to the searching technique is
to use the given performance criterion J in some way to decide which

solutions need to be examined. Techniques of linear and nonlinear pro-

gramming fall into this category. For a simple introduction to pro-

gramming methods see e.g., Part 3 of the symposium edited by
15

Bellman. Various ways of tearing the system into smaller parts,

optimizing the smaller parts by multilevel programming, and then

reconnecting have been avocated. For a sampling of the current lit-

erature on multilevel programming see for example Session VII of
the 1965 Joint Automatic Control Conference.

99.
Bellman's dynamic programming is a logical way to eliminate

many nonoptimal solutions on the basis of a partial computation. As

with other search techniques, the large computer memory required for

problems with more than three or four state variables is the chief lim-
itation.

The gradient method suggested by Bryson and Denham, 20' 24 and

by Kelley 53' 54 linearizes the problem about the most recent iteration

and then seeks to change the control in the direction of maximum

decrease of the penalty function. In order to do this the adjoint equa-

tions to the linearized differential equations are used to find the influ-

ence of a change in the control on the penalty function. This approach

is simple to program, but suffers in many applications from a slow

rate of convergence. A step size must also be chosen. More recently

some work has been done on putting this method in the more general
• 76,100

framework of nonlinear programming known as convex programmlng.

The second variation method is suggested by members of the
52

same research groups who suggest the gradient method. 19' By

utilizing the second-order terms in a series expansion about the pre-

sent iteration, the convergence of the method is greatly accelerated at

the expense of greater complexity. If the expansion is about an optimal

tragectory these second-order terms also lead to a method of feedback



-4-

19 68
control. McReynolds and Bryson suggest using a Riccati transfor-

mation and solving by a method of sweeps. This is equivalent to
Newton's method.

3. Since Pontryagin's maximum principle 84 has become well

known, a number 'of computational methods have been proposed which

use information given by it. One interesting approach is to minimize

{maximize) a sample Hamiltonian at each iteration, suggested by
53 36

Kelley and used by Gottlieb. The first order change in the Hamil-
tonian has been used by DennI02 and by Kurihari I03 Durbeck 26 changes

the performance index J in such a way as to minimize the sample

Hamiltonian, which leads in the limit to efficient suboptimal controls.
Al'brekht I solves the Hamilton-Jacobi equation by a power series

method, truncating to obtain a suboptimal control.

Application of the maximum principle leads to a two-point bound-

ary value problem* {see e.g., Chapter II). A whole class of computa-

tional methods centers around solving the resulting TPBVP by finding
the initial costate vector w*. This thesis develops a method of this
c lass.

A fundamental property of the costate initial condition vector _".-"

is that it points opposite to the direction of the gradient of the minimum

cost surface, whenever this gradient exists. {This implies that _'Tr*> 0

under certain conditions, and that _r* can be searched for among the

vectors 2 satisfying this inequality.}** Neustadt 74, 73 has designed a

computational method based on this property. Eaton 27 has extended the

method to the rendezvous problem. Fadden and Gilbert in Reference

10 and Paiewonsky in Reference 30 have dealt with some computer

aspects of this method.

Another method for finding time optimal controls is attributed to
78

Krasovski and Gamkrelidze and discussed by Paiewonsky. It involves

choosing a final time T such that T< T* and finding a costate vector

2 such that the resulting initial state vector x(0) is colinear with the

given initial condition _. This is repeated by increasing Tuntilx{0)= _.

The two-point boundary value problem is abbreviated to TPBVP.

See the Nomenclature Sheet for the meaning of these symbols.
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The most direct method of finding the correct costate initial con-

dition vector _r":"is to guess a vector Tr, solve the resulting initial

value problem to obtain the terminal errors, and then correct Tr iter-

atively to decrease the errors. Bass 13 has applied this to a class of

• 78
nonlinear state equations. Palewonski uses linear state equations

58
and a gradient method for correcting Tr. Knudsen uses linear state

equations and a form of Newton's method for correcting 7r that leads

to faster convergence. However, this approach does not always work

because the first order effect of variations in _r can be zero (on a

switch curve in the state space).

Plant8 l, 82, 83 modified the boundary conditions of the problem,

replacing the given terminal state 0 by a hypersphere around 0.

Then Knudsen's method was applied. This procedure got rid of the

switch curves and hence eliminated the main difficulty with Knudsen's

method. Plant states that the hypersphere can be made insignificantly

small without affecting the iterative procedure appreciably in the cases

studied.

Comment 1. 1

One of the requirements in computation is to insure that the

global optimal control has been found. There are two basic ways to

do this. One is to adequately search the entire space of possible so-

lutions for the optimal one. This leads to relatively simple schemes

which tend to require large computer memories and large amounts of

c omputation time.

The other way of insuring a global optimum is to find only the so-

lutions which satisfy a set of necessary conditions for an optimum (i. e.,

Pontryagin's maximum principle) and then:

1. compare al___lthe resulting extremal solutions to find
the global optimum, or

2. appeal to the physical or engineering reasonableness
of the solution to rule out any better solutions, or

3. show the uniqueness of the extremal solution.
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C. DESIGN OF THE COMPUTATIONAL METHOD

A certain point of view should be kept in mind when considering

iterative methods: Every iterative method involves replacing the op-

timal control problem in some manner by a sequence of simpler pro-

blems which converges (hopefully) to the given optimal control problem.

The idea is to try to improve on current iterative schemes.

Using some information from Pontryagin's maximum principle can lead

to a faster method, (if the resulting information is used to advantage),

and in fact it was decided to attack the TPBVP. The author was at-

tracted by Newton's method because of its rapid convergence and be-

cause of the sufficient conditions for convergence given by Kantorovich 49

Also the design approach used by Plant 82 was intriguing. He

changed the terminal boundary condition from a point to a hypersphere,

which smoothed the problem out and removed a difficulty found in

Knudsen's method. 58 This was justified not only on the ground that it

made the computational method work better, but also on the ground that

for many engineering problems it was more sensible.

With all this in mind, a computational method was sought that

would solve the TPBVP, use Newton's method, and somehow smooth

out the TPBVP. Of course, Newton's method could be applied to the

TPBVP directly, but there is no guarantee it would converge. In talks

with Professor Athans two points became clear: (I) If the optimal con-

trol function were analytic instead of a discontinuous function then the

convergence theorem of Kantorovich could be applied to it, and (2) If

the TPBVP were linear Newton's method would by definition converge

in one step. So it would seem logical to replace the nonlinear TPBVP

by a sequence of smoother ones, starting with a linear TPBVP and

converging to the given nonlinear one. Newton's method is used to find

the solution of each member of the sequence in turn, leading to a se-

quence of suboptimal controls.

As soon as the basic idea was suggested some of the properties

proved under proper assumptions in Chapter III began to become ap-

parent. The sequence could come as close as desired to the original

TPBVP while retaining a smoothness property. There exists such a

sequence for which Newton's method will converge when applied to each

smoothed TPBVP sequentially.
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In order to show these properties and also to do some computer

examples it was decided to concentrate on a relatively simple problem;

that of fuel-optimal, fixed-time control to a given state, with a linear

time invariant plant (Problem 1). A mathematical development of the

method for Problem 1 is shown in Chapter II, which is the key chapter

in understanding the main part of the work.

D. EXPERIMENTAL RESULTS

A digital computer program was formulated, in FortranlI, based

on the computational method designed above, and a number of numeri-

cal examples were run on an IBM 7094. In most cases the suboptimal

controls were found and they converged to the optimal control. When

this was not the case, usually the problem had no solution because the

final state was outside the set of reachable states, or possible it was

inside but very close to the edge of the set of reachable states.

One very important factor was the effect of numerical accuracy

on the success of the method. For example, in a given problem the

effect of varying the fineness of the mesh or partitioning used in approx-

imate integration was studied. With a fine mesh the method works well;

as the mesh is made more coarse, more iterations of Newton's method

are needed, more members of the sequence of approximate TPBVP's

are needed, and finally for some very low accuracy the method ceases

to work at all. A conclusion reached by the author is that it is nec-

essary to include information on mesh size, integration scheme, com-

puter approximations and short cuts, etc., when describing results of

computer studies with an iterative scheme.

The suboptimal controls were found to be very efficient in total

fuel consumed. They transfer the system to the desired final state in

the given time. Five or six members of the sequence of approximate

operators were usually enough to come quite close to the exact TPBVP

in terms of total fuel used(< 1% difference), appearance of the control

function and the state space trajectory. From two to seven iterations

of Newton's method were usually enough to solve a particular member

of the sequence.
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Reliability and generality were aimed for in the computer pro-

gram more than fast computation time. Typical runs required from 8

to 100 seconds of elapsed computer time. It is difficult to make a

direct comparision, but this computer program seems slower than that

of Plant 82 and roughly comparable to or faster than some others. 60

It was hoped that the convergence theorem of Kantorovich could

be used to estimate when Newton's method would converge and when it

would not. However, the computer examples showed it to be much too

conservative as a sufficient condition for the class of problems studied.

A sequence of approximate operators (TPBVP'sl could be constructed

so that the sufficient condition for convergence would be satisfied at

every step, but it would require very many members for that sequence

to converge to the exact operator. It was found better to use a step

size based on a numerical study of the actual region of convergence for

Newton's method with this class of problems. If convergence fails to

occur for some operator, it is then easy to make a smaller change

from the previous operator and try Newton's method again.

E. CONTRIBUTIONS OF THE THESIS

The main contribution of the thesis is the development of a new

computational method for finding the optimal control which has some

unique features. The method appears to be efficient, practical, and

flexible, as discussed in Chapter VI. Part of its importance is due to

the fact that the method can be extended to a large class of problems,

as shown in Ghapte r VIII.

Kantorovich's convergence theorem was used to prove that under

suitable conditions this computational method can be carried out and

converges to the optimal control. The generality and power of the

theorem lies partly in the fact that it can be applied to problems in any

Banach (complete normed) space. When the solution being sought is a

function, a function space is used. This avoids the need for the re-

stricted time interval found in recent convergence proofs by McGill and

Kenneth 67 and by Kalaba. 47 In addition, Kantorovich's proof allows for

oscillation of the iterates and thus covers a larger class of problems

than the proof by Kalaba.
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A number of numerical results have been found and presented

for various plants up to sixth order. This represents a significant

addition to the known solutions to fuel optimal control problems. The

digital computer program is available and will compute fixed time,

fuel optimal control to a given state for any linear, time invariant

plant up to tenth order.

Some consideration has been given to the approximations used

in mechanizing the calculations on a digital computer, and to the effect

of these approximations on the results. Very little about this important

but difficult practical aspect appears in the literature on computational

methods for finding optimal control.

Finally, the point of view that an iterative approach involves

smoothing and/or simplifying the problem in some fashion can be fruit-

ful for future study. In effect this viewpoint has been used by other in-

vestigators, but more work needs to be done to provide a logical basis

for design of a method and for comparison of the relative effectiveness

of different approaches.

An outline of the thesis is given in the next section as a descrip-

tive summary.

F. OUTLINE OF THE THESIS

A method for computing the fixed time, fuel optimal control

of a linear time-invariant system to a given final state is examined

in some detail. A number of possible extensionss some easy and

some not so easys are suggested in Chapter VIII.

Chapters II and III present the analytical development of the

method and some theoretical results concerning it. Chapters IV-VI

present the computer program, some of the digital computer results,

and a discussion of the experimental aspects of the method.

In Chapter II, linear, time-invariant differential equations are

used to describe the system. The result is a sequence of approximate

operators which is used as a replacement for the original two-point

boundary value problem. This sequence is the one implemented in the

digital computer program for numerical studies. It is also used in

the theorems of Chapter III.
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Chapter III shows some theoretical results, and also outlines

some advantages (and disadvantages)of the method.

In Chapter IV the computer program is outlined, and in Chapter

V the main computer results are presented. This shows how the

method works out in practice.

Chapter VI is devoted to a discussion of the computer results.

Some practical strengths and weaknesses of the method are pointed out.

A special emphasis is placed on the effect of digital approximations on

the results, and on the trade-off between computer time required and

the accuracy of the results.

Two problems of a more general nature are outlined in Chapter

VII. It can easily be seen how their nonlinear system equations make

the result much more difficult to handle.



LINEAR PLANT,

CHAPTER II

FIXED TIME, FUEL OPTINIAL CONTROL

TO A GIVEN STATE

In this chapter the computational method of the thesis is pre-

sented. The analytic results of Chapter Ill, and the computer program

and experiments of Chapters IV-VI are based on the approach de-

veloped here. The problem is presented, reduced to atwo-point

boundary value problem, changed to integral form, replaced by a

sequence of approximate integral equations, and made ready for

numerical solution by application of Newton's method. Advantages

and limitations of this procedure are discussed in Chapter Ill.

A. PROBLEM I

Given: a. A system (plant)described by the linear time invariant

(vector} differential equation.

_(t) : Ax(t) + bu(t) (Z.I)

b. A fixed time interval

t¢[0, T] (z.z)

c. Initial and terminal boundary conditions on the state vector.

x(O) =

x(T) : ___

(2.3)

Note: In much of what follows, the terminal state

0_, the equilibrium point of the state equations. In this case,

is called a regulator problem.

d. The control variable must satisfy a constraint

[u(t) l< I for all t¢(0, T]

is the origin,

Problem 1

(2.4)

Note: The function space of allowable controls Ufo" T]
pendix A is

-11-

from Ap-
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U(0, T ] = {u(t): [u(t)[<__I,

for all t c (0, T] }

The fuel functional is

T

3(u) = f [u(T) [ dT (2.5)

0

Then: It is desired to find a control u*(t) that

a. Satisfies the constraint Z.4.

b. Transfers the system 2..1 from the initial state ._ at time

t = 0 to the terminal state _ at time t = T.

c. Minimizes the fuel functional 2.5.

This set of conditions will be called Problem I.

B. THE TWO-POINT BOUNDARY VALUE PROBLEM

The relations deduced by applying Pontryagin's Minimum Prin-

ciple to Problem l are summarized below. See Appendix A for a

statement of the Minimum Principle.

The "deadzone" function dez[ .] is defined asDefinition 2.1 :

follow s :

u(t) = dez [w(t)]

means u(t) = 1 when w(t)> 1

u(t) = 0 when Iw(t)[< 1

u(t) = -I when w(t) < -I

and u(t) is not well defined when l w(t) I = I. The input-output

characteristic of the deadzone function is shown in Fig. 2.1.

(2.6)

The two-point boundary value problem will be abreviated to TPBVP.
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Let uVtt), t _ [0, T] be the fuel optimal control, the solution

of Problem 1, assuming that one exists. Let x"(t) be the resulting

state on the fuel optimal trajectory. Let _p (t), t_[0, T] be the cor-
responding costate vector.

Then the Minimum Principle yields the relations:

H(x*, * * * * *-- u , __p*,t) = [u"(t)l + p 'it) A x it) +p '(t) b u*(t) (2.7)

•_x*tt ) = a_.H, = Ax*(t) + b u* (t)

a£
(z.s)

t)*(t) - a H_ , = - A' p*(t) (g. 9)
ax

t0) = _6

x iT) = O
(Z. 10)

and the relation

H(x* u*, * _ *, _.p , t) _< Ht x_,_ u, p , t) for all u such that

lul<l

yields

u*(t) = - dez [b ' p*(t)] (z. 11)

Comment 2.1: Examination of Eqs. 2.8-2. 1 1 shows that know-

ledge of w , the optimal costate initial condition vector, is sufficient

to reduce the TPBVP to an initial value problem (which requires 2n

straightforward integrations). Determination of _ will be considered

equivalent to solution of the TPBVP.

C. INTEGRAL EQUATION FORM

The TPBVP of Section B is equivalent to a tvector) Fredholm

integral equation of the first kind. In view of Comment 2. 1 it reduces

to a nonlinear operator on the vector w To see this, first write the

solution of Eq. 2.9 .

* -A' t Tr* *A p*_.p (t) = e- _ where __ = _ tO)
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Define for convenience

q(t) _ e -At b (z. lz)

then the optimal control 2. 11 becomes

_-( -A 'tu t) = - dez [b_'e_ -- __]

The solution for the state Eq. 2.8 is

= -dez [q'(t)_r*] (2. 13)

t

$ A t f _'<x (t) = _e-- [__ + . q(T)U (T)dT]

0

If the terminal boundary condition 2.3 is applied, then

T

-AT f__- _o=_-
0

q(v) dez [q'(T)__*] dT

For later use with Newton's method, the operator T(_) is defined.

T

AT fT(__) - _ - e -- _0 -

0

CI(T ) dez [c 1' (T)_V] dT (2. 14)

The operator T(__) maps one n dimensional vector into another.

T(_r):R --* R
-- n n

Problem I is now reduced to finding

the operator ec_uation

, the solution vector of

T(_r ) = 0 (2. 15)

For simplicity, _ will be referred to as the solution of the operator

T(_). Also, in most of what follows the final state is the orgin, so

T(__) becomes

T

T(__) = _ - f q(T) dez [q'(T)_] dT (2. 16)
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D. SEQUENCE OF APPROXIMATE EQUATIONS

A sequence of approximate operators {Tk(_)} is now introduced

to replace the operator T(__). The idea is to start with a very simple

operator and work up by steps toward the exact operator T(__). By

doing this properly, Newton's method can be guaranteed to converge

at each step, so that a workable computational approach results. Two

approximations will be introduced; one is a linear term to get the

computations started successfully, and the other is a sequence of

smooth functions Uk(.) with a parameter _7k, k=0, 1,2 .... k I. As

_Tk--- co, Uk(" )--_u;:_(•). So the idea is to start with a linear approxi-

mation (_70=0), then to drive the linear part to zero and increase Nk

so that the approximate control Uk('} converges to the optimal

control u;:"(.).

When the optimal control U"(q'(T)__') is replaced by u k the

form of the optimal control argument q'(T) _ will be retained.

The simplest useful control one could start with is a linear one.

Change I. First apply a linear control

u0(.) = %(.)

Using the control argument q'(t)__ yields

UO(a'(t)__ ) = _0q'(t)Tr

Inserting this control into the differential Eq. 2. 1 and applying

the given boundary conditions leads to the zeroeth approximate oper-

ator.

Let W(T)

Then

T

T0C ,= f
0

q(r)a 0__'(T)zdT

be the controllability matrix

T

W(T) =f

0

q(T)Q'(T)dT (2. 17)

T0( Z ) : __ - a0W(T)Tr
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-I

dez (t)

+1-

-I.

_.z
+1

Fig. 2.1 The Deadzone Function dez

-4
I

-3
I I

4

q'(t)Tr

Fig. 2.2 The Approximate Control Function uk
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In order to approximate the optimal control function, an expo-

nential (actually hyperbolic tangent) form Uk(. ) is introduced with a

scalar approximation factor rlk. The deadzone function can be ap-

proximated as closely as desired (where it is defined) by an analytic

function, since the points of discontinuity are excluded (see Dieudonne

for a simple treatment of this).

Change 2. Introduce an approximate control function

1 {tanh [r?k(" + I)] + tanh [Dk(" - I) ] }Uk(')=-2

Using the control argument q'(t)_ yields

25

i {tanh[ k(a,Cth + ]}Uk(a'(th)= -2 (Z.18)

Aplot of uk(t) as a function of Cl'(t)__ is shown in Fig. 2.2

for some typical values of _k" As r_k increases, uk(t ) approaches

the deadzone function u (t).

The general approximate operator uses both of the above

changes.

T

Tk(__) = __- akW(T)__-f q(T)Uk(q'(T)__)dT (2.19)

Let the sequence of approximate operators have k 1 members

or steps. Then in order to approximate uS( . ) the slope a k should

be driven to zero and _k should be increased at each step until some

suitably large limit rTk 1 is reached.

0 < rT1 < U2 < < oo
.... _kl

a0 > "'" > ak2 > ak2+l = "'" = akl = 0 (2.20)

where k 2 < k I

In Fig. 2.3 the sum of the two changes is shown for a typical

sequence of approximate operators. This sequence has three members

(kl=3), and one of them contains a linear term (k2=2).
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to be the solution vector of the k tl_

Tk(_k ) = 0

Definition 2.2: Applied sequentially means the solution vector

_rk-l of the previous operator Tk_l(_V) is used as a starting vector

for Newton's method on the present operator Tk(_ ).

Properties of the sequence are discussed in Chapter III, Section

D, but as an introduction the main points are listed here.

1. A sequence can be found such that NewtonVs method

converges when applied to each member sequentially.

,

Under suitable restrictions this sequence of oper-

ators converges (in the L2norm) to the exact op-
erator T(_w).

The solutions to the approximate operators lead

to suboptimal controls which use only a little more

fuel than the optimal control, yet do not require

the instantaneous switching of the optimal control.

It only remains to show what size steps to make in the para-

meters _ and a. The aim is to make these steps large, yet still

guarantee that Newtonts method will converge.

Definition 2.3: Assume the solution vector --_k of the operator

Tk(X) has been found. Now make changes A r? and /x a in the para-

meters r? and a to form a new operator Tk+ 1. Apply Newton's

method to Tk+ 1 sequentially {by Definition 2). The set of all changes

A r? and A a such that Newton's method converges (when applied to

Tk+l) is called the region of convergence, about _k and a k in the

parameter space. There is a corresponding region of convergence

in the space v of solution vectors.

A short experimental investigation was made of the region of

convergence for a typical problem of the class to be studied, and

Fig, 2.4 gives some idea of the results.

In Fig. 2.4 a typical sequence of the solution vectors {_k} is

plotted with the region of convergence indicated for each vector --_k"

The starting vector X0 can always be found. Then the region of

convergence gradually decreases as the sequence approaches the
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Uo+a o

u(t)_ _l+a '

Fig. 2.3 Typical Sequenceof ApproximateControls
(TheSumof uk and the Linear Term)

7r2

ro ®

_o

Fig. 2.4 Regions of Convergence for the Sequence t.[ ___kltj

lip
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exact operator. However, the region of convergence soon includes

the exact solution vector _ as shown in Fig. 2.4.

This experimental investigation also indicates it is best not

to get too close to the edge of the region of convergence. Newton's

method tends to oscillate and make only small progress per step

toward the solution when the iterate is near this edge (in the f2n°rm)"

Thus if total computer time for the calculations is to be kept low, it

is good to stay well inside the region of convergence, even if the se-

quence then has more members. Also, this gives a factor of safety

in case the size of the region of convergence has been overestimated.

An attempt was made in Section F to find an analytic estimate

for the maximum size of these steps, using the convergence theorem

of Kantorovich and Akilov49, page 708. This was not satisfactory

because :

I. The effect of r7 and a on the required norms was too

complicated, and

2. The sufficient conditions are too conservative, especially as

becomes large.

Due to the exponential nature of the approximate control function,

it seems logical to increase r_ at an exponential rate. Further, the
Uk+ i

ratio used is affected by the number of dimensions (n) of the
r7k

state space. In the experimental investigation of the region of con-

vergence, an effort was made to see if an equation of the form

C
l c

(_-_---) n 2= c3

Cl,C2, C 3 constants

might adequately predict a good step size in fT. Good agreement was

indicated (At7 large, but not too near the limit of the region of con-

vergence) for

c = 4
l

c2 = 3

c = 60
3
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The resulting formula for changing _ is

60 1/4

AUk = (----_) rTk
n

(2.21)

and of course

r_k+l = _Tk+ A r)k (2.22)

Now A r7 is fixed but A a still must be chosen. Remember

from the sequence 2.20 that it is desired to reduce a quickly in

order to get rid of the extra linear term introduced to start the se-

quence. First order estimates are made of the effect of the control

Uk+ 1 on the state. Thena proportion rule is used to choose Aa.

A__aa = effect of control Uk+ 1 (2.23)
a effect of the linear term

In the first member of the sequence the linear term causes a

change in the state vector, given by __ - e -A_ T O . This expression

is used as an upper bound estimate on the effect of the linear term.

To estimate the effect of the approximate control Uk+ 1 on the

state vector the previous solution !k is used, and a vector gk is

defined.

T

q(T) Uk+l[q'(T)!k ] dT (2.24)

These vector estimates are normed and substituted into the

proportion (2.23). A (1 + U) factor is included to accelerate the

changes in a if r_ is large.

II kll l
Aak = -a0 -AT (1 + tlk)

II! - - _oill
(2.25)

and

ak+ 1 = max {0, a k + Aak} (2.26)
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Formulas 2.21 and 2.25 yield changes A_ and Aa which

were found to work in the examples studied. In most cases, studied

during the course of this research and presented in Chapter V, Newton's

method converged when applied sequentially to the new operator Tk+ I.

E. APPLYING NEWTON'S METHOD

Newton's method is to be applied to a typical operator Tk(_).

Newton's method is covered in Appendix B, but a short introduction is

given below.

--_k such that

Given the operator Eq. 2. 19, to find the solution vector

Tk{Trk) = O,

i
one linearizes about the current guess

• i) T{kl) TriTk(Zk) = Tk (wl) + (_k - Z {-- )

Then the next iterate is found by solving this linear equation for _rk.

-l

i+l = i _ [TLI)(Tri)] Tk(_ri) (2.27)

Equation 2. 27 is the recursive relation of Newton's method. Since

has a vector valued range space, its first derivative is the Jacobian

matrix.

T k

T

T(kl) (_) = -akW(T)-f q(T)q

0

'(T) U(k1) [q'(T)Z] dT

Then Eq. 2.27 can be written out entirely in matrix notation.

T

= n f {k1) '(T)_ i]dT] 1 •i+l i + [akW(T ) + q(T) q'(T) U [q [_-akW(T)_r 1

0

T

f
0

q(v)u k [q'(v)_r i] dw] (2.28)

The approximate control function u k is, from Eq. 2. 18,



-23-

Uk[q,(T)___] = -21 {tanh [ r)k(q'(v)_r_+ I)] + tan_h - I)]}

(2.29)

and its first derivative is,

(1) 1
u k [q'(T)._] = -_ rTk {2-tanh 2 [r_k(q'(T)_r + 1)] - tan_h2[rlk(q'(T)Tr

- l)]} (2.30)

This recursive relation 2.28 with Eqs. 2.29 and 2.30 will be

0
called the inner loop. Starting with an inital guess Tr , Eq. 2.28 is

i i-1
applied repeatedly. If at some step i, _r --_r , the inner loop is

1

said to have converged, and the vector Ir is defined to be the solu-

tion vector--_k of the operator T k.

F. CONDITIONS FOR CONVERGENCE

A sufficient condition for the convergence of Newton's method

has been given by Kantorovich 49, page 708. This condition is shown

in Appendix B as Theorem B. 1. The purpose of this section is to

apply the sufficient condition to the approximate operator Tk(_r ) of

2. 19 and to write out the required expressions.

The first two derivatives of Tk(_) are given in Chapter III as

Eqs. 3.4 and 3.5. Here the task is to evaluate or bound certain

norms.

T(1) -I
Let Fk+l - [ k+l (--_k)] (2.31)

Then

Anorm =[lFk+ I Tk+l(__ k) II

_ (2) ( )IIB IIFk+llk+ 1 _norm :

are the required norms B is to be evaluated over all possible• nor m

vectors __ belonging to the n dimensional vector space•

Using the definition of the operator T k and its two derivatives

leads to the expanded formulas



-24-

Fk+l = - [ak+iW(T) +

T

f
0

' _ u(I) d_]-*CI(T)a( ) k+l[q'(T)--_k] (Z.3Z)

A
norm

B
norm

T

IIFk+ 1 " [__-ak+l_W(T}_Ek- f

0

T

IIrk+l" f
0

u(Z)
q(T)q'(T)_q'(T}Z k+l [ q'(T}Z] dTll

q(T)Uk+ l[q'(T}_Ek] dT] [I

(2.33)

(2.34)

There remains the problem of searching over the space P of

costate initial condition vectors for the one which yields the largest

value of the norm. Actually it is only necessary to search in a

sphere around --_k' but the radius of this sphere is not known before-

hand. To simplify matters, an upper bound is established by using

the maximum value which u(2)( •) can assume.

T

Bnorm --< IIFk " f q(T)q'(T)yq'(T)Z dT" U (z)max II (2. 35)

0

The expression inside Anorm is a vector, so any vector norm

can be used. The _ or maximum norm is chosen for simplicity and
(3o

also because it yields the smallest result of any of the _p (Lebesque)

norms for a vector.

• Thus if the argument of 2.32 is a vector s i,

= II_ IIAno r m i

one can use

Anorm = max I sil (2.36)
i

For B a third-order tensor must be handled.
norm '

case, the argument of the norm is of the form Sij k.

In this

Bnorm = II Sij k II

In Appendix B it is shown that

sion

B
nor m

can be bounded by the expres-
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B < max I l lSijk[
norm -- i j k

(z.37)

Kantorovich's theorem then guarantees convergence if

h Q Anorm Bnorm• < I/Z (z.38)

One of the research aims was to see how closely Eq. 2.38

would predict the actual extreme conditions for convergence. Also

it was hoped that this information could be used in designing the se-

quence of approximate operator_ Toward this end, another norm

similar to Bnorm was defined which was intended to provide a closer

estimate of the actual limit of convergence.

r (2) IICnorm = IIFk+l k+l (-_k)

and in expanded form,

C
norm

T

= IIrk+lf
0

a(T)a,(T)_S,(T_ .(Z)%+1 [a'(Thk]dT[I

h 1 = Anorm Cnorm (2.39)

The idea is to see whether or not the expression A • C
norm norm

more accurately predicts the limit of convergence for Newton's method

In Chapter IV, Section I a way of approximating these expres-

sions on a digital computer is shown. In Chapter V some numerical

experiments were performed in finding the parameters h and h 1.

Both the guaranteed convergence parameter h and the estimated

convergence parameter h 1 turned out to have values far in excess

of 1/2, although h 1 was usually one or two orders of magnitude

smaller than h. The conclusion is that the convergence theorem is

very useful in theoretical studies, but much too conservative to give

practical estimates of the region of convergence•



-26-

G. SUMMARY

The original minimization problem was converted to a two-

point boundary value problem. This was put into integral form and

reduced to a nonlinear vector relation (or operator); i.e., the prob-

lem is considered solved once the initial costate vector _ is found.

The vector relation was replaced by a sequence of approximate vector

operators. A method was designed for choosing the sequence so that

Newton's method could be applied to it_ and so that it approached as

closely as desired to the true solution. These properties are verified

experimentally in Chapter V and analytically in Chapter III.

The procedure consists of applying Newton's method sequentially

to the sequence of approximate operators to determine their solution

vectors _k ). These vectors lead to a sequence of approximate

controls which converge (as closely as desired) to the optimal control,

and which in Chapters III and V are shown to have unique properties

of their own as suboptimal controls.



CHAPTER III

ADVANTAGES, DISADVANTAGES, AND LIMITATIONS

In this chapter some of the properties of the procedure outlined
in Chapter II are discussed. The discussion is divided into sections

parallel to those of Chapter II, to give insight into each step in the

development of the method. It is shown that under suitable assump-

tions the suggested method converges to the optimal control.

A. PROBLEM 1

The fixed-time, fixed-terminal state problem with linear, time-

invariant plant, limited control effort, and total fuel cost criterion

represents one specific class of problems out of many possible ones.

It was desired to pick a class of problems to examine in some depth,

and this is a particularly apt one. Some possible extensions are de-

scribed in Chapters VII and VIII.

B. PONTRYAGIN'S MINIMUM PRINCIPLE (Two-Point Boundary
Value Problem)*

The theorem provides a set of necessary, but not sufficient con-

ditions for a minimum to exist. Thus if there is no solution to the

TPBVP, then no optimal control exists. This would occur for in-

stance if the terminal state 8 were not reachable at time T from

the initial state _. However, the existence of one, or even several,

solutions to the TPBVP does not in general guarantee the existence

of an optimal control.

A solution of the TPBVP corresponds to a stationary point of

the original problem; a maximum, a minimum, or an inflection

point. The problem faced bythe user then is this: Given a solution

to the TPBVP, how can one be sure it leads to the absolute minimum

of the cost functional? If one finds more than one solution, the cost

functionals can be computed and compared directly to decide between

The abbreviation TPBVP will be used for the Two Point Boundary

Value Problem.

-27-



-28-

them. In general, though, only an appeal to the "reasonableness of
the solution" can be made. Does the solution seem reasonable

physically? Does it yield a lower cost than other control functions
that have been tried or used?

Analytic Sufficiency Conditions for Optimality

For Problem ithere are some results available, under the

following additional conditions:

Assumption l: The System 2. l is controllable.

Assumption 2: The state 8 is reachable at time T from the

state _. (see Appendix A for a definition of reachability}. Es-

sentially this means that there exists at least one allowable

control transferring the system from the state _ to the state

in time T.

As sumption 3 : The system matrix of 2.I is nonsingular, i.e.,

det A / 0 {3. 1}

Then: a. Assumption 2 is sufficient to guarantee the existence of a

fuel-optimal control for Problem l (see Neustadt72).

b. Assumptions l and 3 are sufficient to guarantee that the

fuel-optimal control will be normal. That is, the argument of the

optimal control relation 2.11 cannot remain constant over any finite

time interval. Thus, given any solution of the costate equations Z.9

the corresponding control from relation 2.11 is specified almost
4

everywhere (see for example Athans and Falb, pp. 443-445).

As a consequence of normality, two theorems have been proven
4

by Athans and Falb, pp. 445-450.

i. The optimal control for Problem i (if one exists) is unique.

2. Moreover, the extremal control (if one exists} is unique.

Note that Assumptions l and 3 are satisfied for most of the ex-

amples investigated in Chapter V. Then if a solution to the TPBVP
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exists, it is the optimum solution to Problem I; i.e., if the pro-
cedure converges, it converges to the optimum initial costate vector
IT .

The remaining parameter is how difficult the problem is, ranging

from easy through increasingly difficult to impossible. A problem is

impossible if Assumption 2 is violated. The implications of this de-

gree of difficulty of the problem are discussed in Chapter VI.

C. INTEGRAL EQUATION FORM

In the integral form the state equations, costate equations, and

boundary conditions are combined in a single set of equations. This

is convenient for redefining the problem as an operator equation.

Also the integral form shows explicitly how the problem reduces to

a search for the costate initial condition vector w In fact, in

Chapter II the integral form really results from the attempt to solve

Problem l in a general way.

The integral form does not introduce any new difficulties.

Clearly if the final state is not reachable (cf. Assumption 2 above)

the resulting operator will not possess a zero solution (for either

Problem I of Chapter II or Problem 2 of Chapter VII).

Recognizing the costate initial condition vector K as the un-

known variable, however, does add a new complication; namely

that there may exist more than one vector K leading to the same

control u(t) for to[ 0, T] . In the case of an optimal or an extremal

control u {t) in Problem l, a simple condition can be stated for

the uniqueness of _".

1. Let 7" be a costate initial condition vector, which leads,

using the deadzone operator, to a given optimal control

ff"(t).

2. Let the condition

[a' It) i'" I -- 1 13.z)

occur at times t = tl, t2...tin in the open interval (0, T).
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The switch times are assumed distinct.

less the problem is singular•

This will be true un-

Lemma 3.1: A necessary and sufficient condition for the unique-

ness of __, given _u (t), is that the set of vectors q(ti) , i : 1,2 .... m

That is the matrix Q must have maximal rank
span the space R n. , _

(rank n), where

I tl.......I 33
Proof: Since the m vectors q(ti) span the space Rn, a valid basis

for the space can be found among them. Specifying the projections of

a vector = in the direction of the basis vectors specifies a unique

vector = . From Eq. 3.3, each of these lengths or projections is ±I.

Conversely, if the m vectors q(ti) do not span the space R n,

a basis can be formed by adding one or more properly chosen ad-

ditional vectors qj in the directions not covered by the vectors

q(ti). Now there is a basis, but one or more of the lengths in it is

arbitrary. For each different length in the qj direction(s) a dif-

ferent vector __ is specified•

Comment 3 I: In the second case if the origin of R is trans-
" ' n

lated to the point specified by taking zero as the length(s) in the qj

direction(s), then the vector _r is constrained to lie in a subspace

of the translated R . The dimension of this subspace would be de-
n

terminedby the rank of the matrix _Q, i.e., n-rank of _Q = dimension

of the region of __.

D. SEQUENCE OF APPROXIMATE EQUATIONS

As stated in Chapter II, the sequence of approximate equations

is chosen to:

i. provide a set of useful suboptimal controls,

2. yield convergence when Newton's method is applied to

them sequentially,
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3. converge to the original equations.

Here it is shown in what sense the sequence possesses these prop-

erties. Problem l is used in the lemmas and theorems, some of

which might also hold for a more general problem.

more specific,

function

1. Suboptimal Controls

The easiest property to show is the first one above. In Problem 1

for instance, once the linear term has been eliminated (a--'0) each

member of the sequence has a solution which leads to a feasible con-

trol. A feasible control is one which transfers the state from the

initial condition f to the final condition O_ in T seconds and does

not violate magnitude constraints on u(t).

Further, note in Fig. 2.2 that the approximate function chosen

to replace the deadzone function is a good approximation except when

the argument is near zero. In the optimal control equations the co-

state trajectory, also called the influence function, measures the ef-

fectiveness of the control in reducing the penalty function J. To be

at any time t 1 e(0, T) the argument of the control

-A'tl " q'(t )if*b'e _" = 1

gives the total per unit effectiveness of u:"(t 1) in reducing the cost

functional J. Using the approximate control function instead of the

deadzone function requires some change in the costate initial con-

dition (that is _ / _S"), but to first order the influence functions re-

tain this property.

Thus an approximation which is bad only where the argument is

small shouldnot increase the cost by much - i.e., should be an ef-

ficient suboptimal control. How efficient this turns out to be will be

seen in the computer examples.

Notice also that in a rough way this approximates the effect of

simulating the optimal control by a physical control having disper-
101

sion (for a definition of dispersion see Paynter ). This is some-

what like using a relay whose output is connected to a transmission
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line as the actuating element. Relays have rise times, and trans-

mission lines tend to smooth the function out. So the suboptimal con-

trols chosen have at least some relation to the problem of designing

a near optimal control.

In summary, the suboptimal controls are feasible, efficient, and

somewhat practical.

2. Sequential Convergence

The basic convergence theorem, Theorem B.1 of Appendix B will

be applied to Problem I. Under enough suitable restrictions a

similar result would hold in the more general case of Problem 2.

Operator 2.19 is the expression to be examined.

T

Tk(_ _) : __-akW__(T) K -f
0

q(T)U k [ q' (T)m" ]dT (z.19)

As mentioned in Chapter II, this is a vector expression with a

vector argument, T k : Rn-_Rn. To be more exact, the range of the

operator is a closed subset of R consisting of the set of reachable
n

states at time T. The derivative as defined in Appendix B is a

linear operation T_I)y:- Rn-_Rn, and it employs a dummy vector

variable y in order to retain this vector characteristic. Applying

the definition of derivative yields the linear operator 3.4.

T

0

In the same way, the second derivative is a bilinear operator

with two dummy variables y and z

T

0

where u(1)[.] is the ordinary derivative of a function

spect to its argument

(3.5)

u with re-

q'(T)_. In the ordinary (as opposed to
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functional) way of taking the vector derivative, the first derivative is

a matrix and the second derivative is a third order tensor. To show

that the result is essentially the same, note that the dummy variable

y_. can be removed from the integral of Eq. 3.4. The result is

T

T(kl)(_') = -=kW{T)f

0

T

= -f CI(T)CI' (T) {a k

0

q(T)q'(TSU{K1 ) [ C_'(TSTr ] aT

+ U(kl)[i'(_)_] }d.-,-

(3.65

Operator 3.6 is the Jacobian matrix, the result of taking the

ordinary derivative of operator 2.18.

(k)The approximate control u k and its first derivative u have

been written out completely as Eqs. 2.29 and 2.30. The second

"u.1'5 is shown below.derivative
K

U(kg)[q,{T)_r] = _rik2 {tanh[_k(Ct'(T)lr+ 15] - tanh3[qk(Cl'(T)_r+_ 1)]

+tanh[rlk(q'(T)K-1)] -tanh3[_k(C l'(T)_r-1)] } (3.7)

Note: In what follows, the absolute value of a vector or matrix

is taken to mean the vector consisting of the absolute value of each of

the components. Thus

la.'(t) I - [ Inl(t) l Iqz(t)I... Iqn(t)I1

Lemma 3.2 :

The operator 2.18 and its first two derivatives have finite norms,

for all finite values of rlk.

For the operator this means [[Tk(_r)i] is finite if IiK[[ is finite.

For the derivatives it means [[T(kZ)(_r__)y,zll is finite if []yi[ and [[zii

are finite, and [[T(1)(K)y[l is finite if [[YH is finite.

Proof: i. The operator Tk(_r)

For any value of cl'('r)_rand any value of _, u k satisfies

[uk[< I. Then there follows,
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IITk(K) II < II !-akW(T)Kll +

T

rlf
0

IS(T) IdT II

which yields
T

HTk(__) [1< ]akl" I[W(T)II-I1 _11+ IIKII+ IIf la¢,)Id¢ll
0

(3. s)

The fundamental matrix has finite entries, so the vector integral

and the controllability matrix both have finite elements. Then as-

suming the added linear term ak, the initial state vector, and the

number of dimensions n of the state vector are finite, it follows

that the operator 2.19 has finite norm whenever the initial costate

vector w does.

Note further that as soon as the extra linear term has been elimi-

nated by driving a k to zero, the operator has finite norm independent

of w.

Z. The first and second deriv_ttives

In either case, for any finite value of _k the derivatives U{k1)

and u_r-)'" are continuous, bounded functions with well defined maxi-

mum values. Let

' klu'{1) I<c4 for all values of ¢t' (T)K

]U{k2) I< c 5 for all values of cI'(T) _

Since the dummy variables are to have finite norm, they may as

well have a norm of 1. Thus we set II_ll = [Vzll = 1. it follows that

the scalar function cl'{t}y is finite, since the elements of q{t) are

finite. Using the supremum norm over time along with any of the 1
P

norms yields a bound on the norm of cl'{t}y when IlYll = 1. One

such bound is

n

Ils,(t)y_.ll < sup _ Iqi(t) I
--t_[0, T] i=l
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For convenience two constants are defined which depend only on the

plant (the state equations) and the time interval [0, T] . Let

n

c 6 : sup _ [qi(t) [

te[ 0, T] i= 1

T

and c7 = [If [q(r) IdT [I

0

The rest follows almost by inspection. For the second derivative

operator the norm can be bounded.

= max

][y [[ : 1,

[l_II--,

[[T(kZ)(,*JZ,7.I[

max

IIzII=
ll_II--1

T

f II_(_a'(_)z_'(_)z_Z)[_,(_)__]d_II
0

and

T

IIT_k2)(-)II<IIf I_(_)Id_II-II_'(t)_ll2-suplu_k2)(.)1
0

2
<__c7c 6 c5

The right hand side of Eq. 3.9 is obviously finite.

Applying a similar reduction to the first derivative operator

results in,
T

[lT(kl)(_r) II < ]akl" NW_(T) II + IIf la(-)Id_II. Ila'(t)zll. sup lu(kl)(. )[

0

5[%[. IIW(T) I[+c 7 c 6 c 4

Since a k must be finite for the operator to make sense,

right hand side of Eq. 3.10 is finite.

(3.9)

(3. lO)

the

Q.E.D.
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Lemma 3.3 :

Given: Assumption I, that the system 2.1 is controllable

Then: The inverse of the first derivative operator 3.6 exists for

all finite values of w_ and of _k"

Proof: This follows from two well established results. Since the

system is time invariant and controllable the controllability matrix is

positive definite over any interval [t0, tl].

tl

f q(v)q'(T)dv > 0 for all tl> t O {3. 1 1)det

t o

Since the approximate control function u k is monotone increasing

its derivative is always positive. Then

{ak+U{kl)[q'(t)K] } > 0 for all finite w

and for all finite time

(3. 1 2)

Also, since the function 3. 12 is analytic it can be approximated as

closely as desired over the interval [0, T] by a finite series of

step functions cjl(tj), where the t.j form a suitable partition of

[O,T].

(1)[cl'(t)w] } - Z cj[ l(tj)- l(tj_l) ] ReI{% +uk
j=l

The coefficients c. can be required to satisfy
J

c. > O,l<_j <_ l(e) (3. 13)
J

From Eqs. 3. 11 and 3. 13 an approximation to the first derivative is

formed, which satisfies

*This result was pointed out by Professor Roger Brockett.



-37-

t.

(c) j

det _ c.jf CI(T)q'(T)dT > 0

j=l t.
j-1

Equation 3.14 can be bounded away from zero as

ment converges to the first derivative operator.

(3.14)

¢--_0, and its argu-

Hence

T

det T{kl)(y_) = detf q(T)q' (T) {a k + u(1)[ q._V(T)_] }dT> 0

and [T(1 )(It__)] -1 exists

Q.E.D.

There is a near singular condition if the quantity in braces in

Eq. 3.6 is very small. This occurs in a difficult or impossible

problem sometimes as a--_0. The costate initial condition guess may

already be such as to lead to the use of almost all the available con-

effort, thus making u_kl)(.)'" very small. This is a near singulartrol

condition, leading to a small determinant and possible numerical dif-

ficulty in finding the inverse.

Theorem 3.1 :

Assume: Assumptions 3.1 and 3.2.

Then: 1. There is a solution to the first operator equation of the

sequence 2.20, i.e., to the linear equation

T0(_) : f- a0W_(W)Tr = O (3.15)

2. Starting with the general member of the sequence 2.20 and

its solution

Tk(_k) = 0

using a k and rlk (3.16)
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There exist changes A_k> 0 and Aa k < 0 (or Aa k = 0 if a k = 0)

such that Newton's method converges when applied sequentially (see

Definition 2.2) to the operator equation

Tk+l(__) = 0 where ak+ 1 = a k + Aa k

nk+ 1 = n k + AT] k

(3. 1 7)

Proof: I. The linear equations 3.15 are solved by inspection

-_0 : I/o-0 W-I(T) i (3.18)

and the controllability matrix possesses an inverse by Assumption 3.1.

2. Theorem B.I from Appendix B is to be applied.

Existence of the inverse of the first derivative operator implies

that each element of the matrix [T(kl)(w)]-i is finite. This in turn

means that the matrix has finite norm, and at any particular argu-

ment Kl this norm can be bounded from above by a constant.

1[[T(kl)(w__" )] -1 I[ < c (3.19)
- _--_

The main task is to show that given any •> 0, there exists some

5 > 0 such that setting

°k+l = max{0, o-k

r/k+ 1 = r/k + 6

-s}

(3.z0)

leads to [[Tk+ 1 (W--k)11 < • (3.zI)

By definition, [[Tk(W_ k) II = 0 (3.22)

Property 3.21 can then be shown by examining the operator Tk+ 1.

HTk+l(Kk )11 = [ITk+I(E k) - Tk(W k) + Tk(W k) l[

<_ llTk+l(_ k) - Tk(Zk)[[ + IITk(Zk) ll
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so [ITk+l(Wk) II_< [ITk+l(W_k) - Tk(Wk) I[

Substitution of operator Z. 19 into 3.Z3 yields

T

IITk+ 1 (__k) l[ <_ I1{ak+ 1 -ak)W_{T)K k -f

0

- Uk[ q'(T)Kk] }d, II

and as a bound,

I[Tk+l(_k ) [1<-- [_k+l

T

+,f
0

For any vector

q(T) {Uk+ 1 [q' (T)--_k]

- ak[" IIW_( T} H" ll__ k II

Constants c5, c6, and c 7

Once _--k is known, c
Kk

(3.2-3)

IS.(T) IdT II sup [Uk+l(W) - Uk(W)] (3.24)

as small as desired by reducing 6. The approximate control function

Uk(.) viewed as a function of Dk is continuous in the supremum

norm. That is, a small change in _lk results in only a small change

in Uk(.) at any vMue of its argument. Thus the second term in

Eq. 3.24 can be made as small as desired by reducing 6. This

proves property 3.21.

Part 2 of Theorem 3.1 follows from Eq. 3.19, Eq. 3.21, and

Eq. 3.9. Theorem B.1 from Appendix B guarantees the convergence

of Newton's method whenever

2

[IT(Z)k+l(_r)ll'-- It [T (1)k+l (w k)] -111- ItTk+l(__k ) It< 1/Z (3.Z5)

Substituting into 3.25 the constants defined earlier leads to the value

of e that is needed for Eq. 3.21.

2 2 )-IJrTk+_(__k)I[< (Zcsc7c6% (3.26)

--k

are fixed by the plant and the time interval.

is fixed. If any of these constants were

_--k of finite norm, the first term can be made
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zero, Eq. 3.25 would be satisfied automatically. Otherwise 5 can

clearly be chosen small enough to satisfy Eq. 3.26 and thus guarantee

convergence by Theorem B. I.

Q.E.D.

Comment 3.2: In part 2 of the theorem, Eq. 3.21 can be shown

in another way. Take the derivative of the operator Tk+l(K) with

respect to cLk and _k" These derivatives can be shown to exist and

to be finite in a neighborhood around Kk" Equation 3.21 then follows.

Comment 3.3: Equation 3.24 predicts the behavior which is en-

countered when Assumption 3.2 is not satisfied (an impossible

problem--not in the set of reachable states at time T). In this case

the sequence can still be started, but as a k is decreased toward

zero ll_k[l increases without bound so that the first term of Eq. 3.24

cannot be made smaller than a certain number, i.e., the norm of a

vector large enough to place the initial state i in the set of reachable

states at time T. Thus one would never reach a step in the sequence

where 6 could be taken large enough to make ak+ l zero and still

have convergence of Newton's method.

3. Convergence to the Original Operator T(_r)

It remains to show that the sequence of approximate operators

{rk(K) } can be made to converge to the exact operator T(Tr). It is

relatively easy to show that an operator

mate T(__) as closely as desired.

Theorem 3.2:

Given: The operators 2.14 and 2. 19

Assumptions 3.1, 3.2, and 3.3

Then: For any c > 0

and

there exists a number

Tk(_) can be found to approxi-

IIT(_2') - Tk(_)11 <

U(e) such that for all

(3.27)

(3.28)
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Proof: Assumption 3.1 and 3.3 guarantee that the problem is normal

and that the argument of the control, q'(t)w , does not remain con-

stant for any finite time interval (for a proof of this see Athans and
4

Falb, pp. 443-447).

Let condition Icl'(t}_2"! = I occur m times at times t., i.e.,
1

lq'(ti) _f : I i: 1,a....m (3.a9)

where

Since cl'(t)w__

of the times

amount.

t.e[O,T]
1

is a continuous function which is never constant, each

t. must be separated from its neighbors by some finitei

Hence m is finite; i.e.,

Iti+ 1 - t il > 0 i = 1, Z .... m

. m< _

Now proceed by removing a small time interval from [0, T]

around each of these m points. Let t and t be the end pointsi- i+
.th

of the l-- such interval and let _i denote the interval. Let B de-

note the set of all such intervals,

B = {t: t_[ti_ , ti+], i = 1,Z .... m}

The end points ti+ are to be chosen such that

"" I 1 + 1/_/-r/

Subject to the condition

BC[O,T]

(3.30)

(3.31)

Note: ti=k means either ti+ or t.__. A typical division is shown

in Fig. 3.1.

For small values of r/ two or more of the intervals may overlap.
.t.

As r7 increases the continuity of q'(t)w guarantees that for some

finite value of r_ all the intervals will be separate.
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Fig. 3.1 Partition of the Time Interval for Theorem 3.9

Uk(t)
I

-I

i
J -I

u*(t)_. 4_

_ 1,oo_(_-_)-'on_'
0 I-I//-q,I I+l/vr _, q_'(t)'rr_

Fig. 3.2 Partition of the Approximate Control uk for Theorem 3.2
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The point is that by subdividing the time interval [0, T], the

ql-

difference between the exact and the approximate operators at

be bounded.

can

T

T( K ) - Tk(W. ) : - Cl(T ) {dez[ q'(T)_2 _] - Uk[ cI'(T)_ -'_] }dT (3.32)

Finally, to bound the term in braces above. Figure 3.2 shows

that the difference between the dez[t ] and uk[t ] functions for a

given _k increases as the ±l points are approached. So outside the

set B the errors increase toward the times ti± , and are largest where

[q'(t)_[_ = l ± I/_-_. Inside the set B it is accurate enough to bound

the difference by 1.0.

Splitting the integral in operator 3.32, taking the norm and

simplifying yields,

T(_)_ - Tk(_ ) < f Iq(T)[dT. 1

B

1 tanhN/'rl]+ f [q(T)[dT[1 - ltanh(2rl+N/-rl) -

[0, T] - B

[[T(w _) - Tk(TrK_')[[ < [[ /

B

or by regrouping terms,

[dw +/ [q(T)[dT[ 1-tanh_r'rl] [[h(-)
[O,T]-B

(3.33)

lIT( £)_ - Tk(;*)_ I[_< 1[c 7 [ 1-tanh_nl + /
B

[q(T) [dT • tanh_ I[

(3.34)

Since lim tanh_-rl = 1

U ---_ Q¢
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and

m

lim B = _ t i (i.e., of measure zero}

r7--_°° i=l

Then both terms of Eq. 3.34 can be made as small as desired by

increasing _1. This completes the proof.

The remaining important step is to ask how many members of the

sequence will be required to reach a close approximation to the exact

operator T(__). Theorem 3.1 shows that finite steps can always be

taken. One would like to reach engineering accuracy using relatively

few approximate operators Tk(W_), say not more than ten or fifteen.

Practical experience with Problem 1 indicates that when a can be

driven to zero this objective is met, as indicated in Chapter VI. Un-

fortunately, there is no available proof of this property. The main

reason for this is that as rlk increases, the approximate control u k

becomes more uneven, causing Theorem B.l to give an increasingly

conservative estimate of the guaranteed step size available in rl.

It seems reasonable that if Tk(_) is close to T(__) as in

Theorem 3.2 their solutions _--k and _ will usually be close also.

A proof of this follows.

Theorem 3.3

Given: i. The operator equations 2.14 and 2.19 of Problem 1

2. Assumptions 3.1, 3.2, 3.3.

Then: For any e l> 0 there exists a number rl(_) such that,

whenever rlk > rl(c) (3.35)

[1_ '_ (3 36)then -- - _-kH < e I •

Note :

The exact operator

T

* fT(_) : ! -

0

for convenience the operator equations are written below.

q('r) dez [ Cl'("r)_' ] dT : 0 (2. 14)
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The approximate operator

T

Tk(Kk) = __-/ q(T)Uk[9'(T)__k]dT = o

0

{Z. 19)

Proof: i. The approximate operator 2.19 has a nonsingular first de-

rivative fromLaT_a 3.3. Then the inverse function theorem of an-

alysis (see e.g., Dieudonne 25) guarantees the existence of an inverse

operator to T k around the point E . Define

I{7__ = T k ) (3.37)

More precisely, there exists two open sets X and Y such that

_r _ X and 7_ Y

Y : Tk(X)

Tk I is defined on Y such that

TkI(Y ) = X

Tkl( C l on Y (is differentiable)

and finally

Tkl(Tk(_) ) : _ for all K _ X

2. From Assumptions 3. 1 and 3.3 the exact operator T(Tr)

one to one in a neighborhood of __ . (The neighborhood is assured

only if T > T .) Then one can write

is

_-- -- (9 (3.38)

Note: More generally the operator

hood of the point 0.

T (__)has an inverse in a neighbor-
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3. By Theorem 3.2, the point TT_= Tk(K) can be brought as
close as desired to the point O = T(_:"). Thus by taking _ large

enough the open set Y can be made to include the point 0. Under this

condition one can bring in the solution to the approximate operator

equation

T;I_-k = (0_) (3.39)

This situation is shown in Fig. 3.3

R R
n Tk n

T

Tk

Xor Sr(_*) Y =Tk(x)

Fig. 3.3 Sets Used in Theorem 3.3

4. Since Tkl
is differentiable it is also continuous. Thus if

It o-T_ II <cz (3.4o)

then llTrq" - w.klI < c8(r/)" ¢2 (3.41)

for small ¢
2

Where the constant c 8 in general depends on how large r/k is.

Under the given assumptions, the exact operator T(Tr) can also be
.j.

shown to be continuous near IT . So given some lower bound Uf0 on

r;k such that Uk > _f0' an upper bound on c8(u ) can be found. Then

Eq. 3.41 can be rewritten.

H_: - _-kll < c 8 ' ¢2 (3.42)

5. The rest is simple arithmetic. Given ¢I in Eq. 3.36,

must make c8 " cZ in Eq. 3.42 at least as small by requiring

one

cz £ci/c 8 (3.43)
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But Theorem 3.2 guarantees Eq. 3.43 if _ is large enough. _k

must thus be chosen large enough to both validate Eq. 3.39 and satisfy

Eq. 3.43. For any nonzero value of c I in Eq. 3.36 this can be done

with a finite value of _k" This completes the proof.

The new results pertaining to Newton's method were introduced in

showing the rationale behind the sequence of approximate operators.

General characteristics of Newton's method are shown in Appendix B.

Quadratic convergence is a very nice property to have.

In conclusion, some factors affecting the performance of the

method have been brought out. It was shown for the class of problems

treated that Newton's method can always be carried out. A sequence

of approximate operators can be guaranteed such that Newton's method

converges when applied to each one in turn. This sequence approaches

the exact operator, and if an optimal solution exists, it converges to

it. The suboptimal controls defined by the approximate operators do

not require the rapid switching of the optimal control, and from a

theoretical point of view should be efficient in their use of fuel. These

properties are confirmed experimentally in Chapter V.



CHAPTER IV

ORGANIZATION OF COMPUTER PROGRAM

In order to test the procedure outlined in Chapter II, a computer

program was written in the Fortran II language. In this chapter the

philosophy behind the program and the organization of its parts are ex-

plained. The overall structure and methods are described first; then

each subroutine is described in greater detail.

A listing of the program is found in Appendix D.

A. OVERALL STRUCTURE AND PHILOSOPHY

It was desired to have a program that would be as flexible as pos-
sible within the framework of Problem l, and at the same time, as

easy to use and as comprehensive as possible. For instance, the fun-

damental matrix is computed directly from its series definition, so
that any system matrix A can be used.

Certain parameters have been left available for adjustment--they

will not normally be changed, but can be used to alter the sequence at
each step of Newton's method or change the sequence step size or the

point beyond which the sequence terminates (how closely the exact oper-

ator T(_) is finally approximated). Even the accuracy of computation

of the fundamental matrix and the accuracy of the solution of the mem-

bers Tk(_ ) of the sequence can be adjusted. However, all these pa-

rameters have normal values built in, and need not be touched by the

user. The normal values were determined by experiment. These pa-
rameters will be described in more detail in the sections on the sub-

routines in which they are used.

A flow chart is shown in Fig. 4. l with the essential portions of the

program, showing the relations which were used for the computer solu-
tion. This shows logically and in order the various steps used on the

computer. For the purpose of convenience in writing and debugging,

-49 -
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IT

READ IN: N, T,__ (or_*)A, b J

q(t)= e-Atb = _0 _1 (-At)r b
r

W(T) =/{q ('r)q' (T)dT ,andT if __* is given

_ =_0 q_(T) dez [q_' ('r) _"] d'r
aO= .I II_W-I(T)__ 111

_.=W -I (T)_/a ° 'r/L= 0

• 7= 1/ sup IIq'(t)_ll a= a0
te[0,T] - - co ICOUNT= 0

ICON = 0

ii _g"i
Aa= - a0(1+r/) II_" 111

aL =a
a=max{O, a+Aa} _.L=_

It I =
ICON = ICON+ 1

II __- _-I III

IS II _-I III < e

I
TIT r/L = 360 _1/4

T/= r/+At/

ICOUNT = 0

ICON = 0

.oq IS r/> 10.

STOP

II _ - _1 II1NO -J IS ICON_>30or >30

-J -- - II _t1 II 1

]_ YES 1

ICOUNT = ICOUNT + 1 =(_+r/L)/2
_%>o o.d o= 0 _ -

YES I [_

IS ICOUNT - 2 <0 , --

YES

Fig. 4.1 Digital Computer Flow Chart

NO

"_o =(=+m.)12k
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the program has been broken into units called subroutines. There is a

Main program (actually a subroutine like the others) which assumes

most of the readin-printout and the internal routing responsibilities.

The various other subroutines are connected to the Main program and

operate in more or less of a sequence. This sequence corresponds to

the flow diagram, so that the (essential) subroutines correspond to

certain areas of the flow diagram. A chart showing the various sub-

routines is included as Fig. 4.2.

To evaluate integrals by numerical means, a simple trapezoidal

rule has been used. In order to simplify the writeup, the symbol

M T

will be used as the numerical approximation forJ That is,

f= 1 M M 0

the expression S_ will really mean S_ +_-S I+_S M + 1"

= 1 _=2

B. MAIN PROGRAM (SUBROUTINE MAIN)

This subroutine has as its primary purpose the control of the flow

of computation. After each other subroutine is finished, the computer

returns to subroutine MAIN to decide which one to go to next. Because

of this, there is a single place where one can look to follow the overall

course of computations.

Decisions as to which optional subroutines to use are made in sub-

routine MAIN. The variable ICHO is used for this purpose. Figure

4.3 shows a diagram of possible values for this control variable and

their meanings. Note that the user has separate control over whether

the subroutines CKCON and SSTRAJ are used.

All of the data is read in by subroutine MAIN. The required for-

mat is indicated in Appendix D. The data include the variables n, T,

_,_._, A, b, and the decision constants. The decision constants are

Several subroutines have been added which are not essential but either

are convenient or else make the operation more complete. These

are shown in Fig. 4.Z with dotted lines connecting them to the essen-

tial portions of the program.
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DATA
CARDS

PRINT
OUT

ICHO

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

MAIN

STOPCL

QMAT

i. _ INIT

START

__2klTER

__2_HGETA

Fig. 4.2 Digital Computer Subroutines

OPTIONAL SUBROUTINES USED

\
\

\

-- SSTRAJ I
I
I

I

t c co. "
I

J'u"c"°" I_,o

Compute
from it*-

use CKCON

use CKCON

Require
h<1/2

Require
h<1/2

use SSTRAJ

use SSTRAJ

use SSTRAJ

use SSTRAJ

use SSTRAJ

use SSTRAJ

Fig° 4.3 The Control Constant ICHO
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named EPS, AMAX, EPMTX, ALPT, M, ICHO, and KPETA. Their

roles will be discussed in the subroutines where they are used.

Most of the output is printed out by subroutine MAIN. First of all,

the input data is printed out for identification and checking. The matrix

exponential and the controllability matrix are printed out. The para-

meters of each approximate operator are indicated, and the costate
i

initial condition vector _ is included for each step of Newton's method.

If anything goes wrong, such as a matrix inversion difficulty, an apro-

pos warning statement is given and appropriate action is taken, i.e.,

the program stops if this inversion becomes too difficult numerically.

In addition, the optional subroutine CKCON leads to the printing

out of the convergence theorem parameter h. Some of the other sub-

routines also do some printing on their own, where this is noticeably

more convenient. Thus, subroutine SSTRAJ prints the trajectory and

control variable argument rather than transfer this information. Sub-

routine CKCON prints some internal information. Subroutine STOPCL

is a library routine, which prints the elapsed real time.

For the output format, the usual eight decimal places with an ex-

ponent are printed, even though in many cases only two or three of

these places are significant.

Finally, subroutine MAIN decides when the program should stop,

by comparing the new value of r7 found in subroutine CHGETA with

the given decision constant AMAX. The program stops when

_k > AMAX (4. I)

Experience shows that the procedure has converged pretty well by the

time _ = 5 or 10, so as a normal value one uses

AMAX = I0.

C,

tor.

SUBROUTINE QMAT

This subroutine computes the matrix exponential and the q vec-

The series definition of the matrix exponential is used for the

computation



-54-

oo

At A I 1 At)_e_- = TF.(_
_=0

This form allows the system dynamics A to be given as any square

matrix. Further, the series is guaranteed to converge for any square

matrix A_ satisfying IIAll < oo, and any time satisfying t < oo.

A decision constant, M, is used to break the given time interval

[ 0,T ] into m equal increments 6.

6 = T/M (4.2)

This program handles values of M_< 100, but can easily be extended

to higher values. The continuous problem is replaced for computation

purposes by a discrete one. Hence it becomes necessary to compute

A8 A28 A38
e-- . Then e-- , e-- , etc., can be found by matrix multiplication,

which is much simpler than computing each of these by the series 4. l

An iterative form for computer application is then simply,

= D _l (A_81/ (4.3)

and

___E = _E _l +Dr (4.4)

with the initial conditions

D O = __E0 = I (4.5)

Finally, in order to decide when to stop, the contribution of each

new term is compared with the size of the series summation so far.

Another decision constant EPMTX is read in with the data just for this

purpose, and a simplified way of comparing sizes is used. Thus the

computation stops when

D!
< EPMTXmax

Actually, in order to keep the computations to a minimum, the test is

performed on each row separately. So the series for the i th- row can
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be terminated when

d.

max --i,___ < EPMTX.
e.

j --I,

(4.6)

To keep the accuracy high, a small value was used for EPMTX

EPMTX = 10 -6

-At
It is really e -- which is used, so the matrix

verted, by using the library tape function XSIMEQ.
-Ak6

The intermediate matrices e --

needed only in the combination

A6
e-- is next in=

need not be stored, as they are

Ak6 bq(k) = _e---

-AS
So once e -- is known, the procedure is

(4.7)

and

-AS
Ek=_Fk.l -

a (k) : -_k_

With the initial condition,

For later use, the matrix

k = I, 2, ...M + I

-AT
e -- is also stored.

q

(4. s)

(4.9)

_(t)

-AT (4. I0)
_=FM+ i = e -

Finally, the supremum norm is applied to each function in the

vector function. In the discrete version this means

= sup qi(k)
qi, sup k=l, M+I
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and the resulting vector is stored.

_sup =

"ql, sup

qn, sup

(4.11)

D. SUBROUTINE INIT

Here the controllability matrix and the first guess for the initial

costate vector Tr are computed. If desired, the state initial condition
--0

vector is also found. The controllability matrix is,

T

WIT) =f q(T)q'(T)dT

or in the discrete version, using the trapezoidal rule and the simplified

summation convention given in Section A of this chapter,

M

W(T) = 6 I q(_)q'(¢)" (4. 12)

¢=1

Element by element, this is

M

wij(T) = 6 I qi(f)qJ ( Q)" (4. 13)

f=l

Again, the inverse is needed. It is found by using the tape library

function XSIMEQ, and is stored as WI(I,J).

If the control constant IGHO is larger than 10, the vector read

in for the state equation initial condition _ is taken to be the optimal

costate initial condition _r*, and a new state initial condition vector

is computed based on

T

(4. 14)
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or a simple discrete form of Eq. 4. 14, again using the simplified sum-
mation for the trapezoidal rule,

__= _ q(l)dez [_q.'(_)_r--: _] (4. 15)

l=l

In addition, when _ is computed the cost (i.e.,

the optimal control u;:-'(t). T

J(u':-') = J l u*(r) I dT

0

fuel) is found for

(4.16)

or a simple discrete form of Eq. 4. 16

M

J(u':-')= 6 I I dez[cl'(f)-_;:"]l (4.17)

1=1

The given optimal costate initial condition _r__ is now discarded
q

and will no___tbe used in any of what follows.

The next step, whether __ is given or computed is to adjust it to

take care of the possibility that the final condition on the state vector,

_8, may not be zero. In this case there is always an equivalent initial

condition _ such that the problem of controlling from the state __ to

the state _@ in T seconds is equivalent to controlling from the state

._ to the origin 0 in T seconds.

__ = _- e-AT0 (4. 18)

Of course, such a transformation is valid only for linear systems, and

takes no account of what happens to the state for time t > T seconds.

Finally the subroutine INIT takes care of the first approximate

operator T0(_r ). From Eq. 3. 18 the solution is known, but the con-

stant a 0 must be chosen. It determines the length of the vector --_0'

and is chosen to make this vector l0 units in the f norm. Remem-
1

ber that the dead-zone function has its "turn-on" magnitude norma-

lized to 1. So the number l0 is a compromise, designed to guarantee

quite a bit of control "on" time, but still leave some "coasting"
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time when various different plants are given. The effect of this com-

promise is discussed in Chapter VI for the computer examples used.

The fl norm is used in calculating s 0.

1 1
a0 = --10 [I__W- {T)_I [ 1 (4. 19)

then the solution to the operator T0(Z) is, using Eq. 3. 18,

-1
1 - W (T)__

_r0 = _00 W I(T)_ = I0--
[1 W-l(T)_i [ I

(4.20)

E. SUBROUTINE START

At this point the first step away from linearity is taken by choosing

the operator TI(_ ). This subroutine is similar to subroutine CHGETA

except that here the first nonzero value of _ is chosen.

1. Choose rT1

As discussed in Chapter II, the objective is to make rT1 large, but

not so large that Newton's method will not converge. Since the form of

Eq. 4.32 does not permit it to be applied where rTk=0 , another approach

is used. Increasing r7 increases the magnitude of the control function

uk(t I. Thus if A r7 is too large, the function rTlq'(t)_E0 will result in

something approaching a maximum effort controller. To be on the

safe side, 71 is chosen to limit the maximum possible value of

rTlq'(tl:0 to one, i.e., in discrete form,

max r?lq'(j)_0 <_ I.
j=l, M

A simple bound for this is found by using the vector

Eq. 4.11.

ll,1 II = l_su 0 oo

Clsup
of

or

= (4 21l  /llasu oll oo
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The point is that when iterations are started on the operator TI(_)

the argument of the control variable will remain small enough so that

8 T l(_r)

changes in the vector _r will have a large effect ( 8_r has relatively

large elements). This is admittedly a rough approximation, but it gets

the sequence of operators under way.

2. Choose a 1

Now that r_l is chosen, a I is found just as in subroutine CHGETA.

The method is discussed in Section D of Chapter II.

a. Estimate how effective the control will be

T

_l = f a(TlUl[a'(T_0]dT (4.22)
0

b. Decide how much slope should be removed.

Ilglll i
(4.2.3)

---%11 + 711 ll&ll,

c. Take the slope a I as near zero as this allows

a 1 = max {0, a 0 + Aa} (4.24)

F. SUBROUTINE ITER

This is the key subroutine, in which Newton's method is applied to

the operator Tk(Tr), using _rk_ 1 as a starting approximation.

There are three values of the vector Tr which are of importance

i
1T

Z_

Zost = Zk-I

is the current iterate

i-1
is the previous iterate, _rf=_r

is the starting approximation
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The first step is to store the starting approximation

rr = rrk_--ost I

also, at each step, the previous value of _ is stored.

Then a step of Newton's method is taken, as discussed in Section

E of Chapter If.

i+ 1
Tr

T

0
T

[_ - akW(T)w i - f q(T)Uk[q'(T)--_i] dT]

0

(I)
The functions u k and uk are written out as Eqs.

(4.25)

2.23 and 2.24.

At the same time, the amount of fuel used is computed

J(Uk) = 6

M

Z I uk[q'(f)_i]

l=l

(4. 26)

Now a check is made for convergence or divergence at each step
i+l i

using an estimate of the proportional change between __ and __ .

i+l

ERROR = -- (4.27)

IIzell 1

One of the control constants, EPS, is used to check for conver-

gence.

If

ERROR < EPS

i
then Newton's method converges, __

control cost for the operator Tk(IT).

(4.z8)

= --_k' and Eq. 4. Z6 gives the

A variable named ICON is set

equal to I to indicate the convergence.

A nominal value of EPS was chosen to give engineering accuracy

in the converged --_k
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-3
EPS = I0

There are two tests for divergence of the method. First, a count

is kept of the number of iterations under the name ICON. Divergence

is defined to occur if either

ICON > 30 (4.29)

or

ERROR > 30 (4.30)

Under this condition the present operator Tk(.._ ) is discarded,

the vector _rk_l is restored as the most recent solution vector.

and

Wk-I = _ost (4.31)

Also the variable ICON is set equal to 0 to indicate divergence.

Finally, if there is neither convergence or divergence at the
st

i+l step, the program goes back to Eq. 4.25 for the next iteration.

G. SUBROUTINE CHGETA

This is the last of the essential subroutines. Its purpose is to

choose the next operator. There are two cases, depending on whether

the last operator led to convergence or divergence in subroutine ITER.

1. When the k _ operator has been solved, the normal method of

selecting the next operator Tk+ 1 (__) is;

a. To choose _k+l' use the formula discussed in Chapter II

Section D.

b. To choose

the control will be,

_k+l

ak+ 1 ,

¢7)= _k _k (4.32)

as in Section 2.D, first estimate how effective

T

0

q(T )Uk+ 1[q '(T)_rk] dT

Then decide how much slope should be removed.
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II :kll 1 I4.33)
Aa k = -a ( )

0 l+rlk+l II:II
1

Finally, take the slope ak+ 1 as near zero as this allows.

ak+ 1 = max {0, a k + A a k}

A counting index called ICOUNT is set to zero for use in Subsection

G. 2 of this chapter.

2. If the solution to the k th operator was not found, due to the

failure of Newton's method to converge, then this k th operator is dis-

carded and a more conservative choice is made. The basic idea is to

go halfway back to the k-18t operator for the new k th operator. Then

kthTheorem 3. 1 guarantees that a operator will eventually be found for

which Newton's method will converge to the solution.

In the computer sense in which an equation implies a replacement,

the equations are,

1
'k = -2 ('k + 'k-1 )

1
a k = -2 (ak +'ak_l )

One complication arises in trying to drive

(4.34)

a to zero.

(4.35)

In a diffi-

cult problem (the final state is difficult to reach), it was found to take

more steps to get a to zero. But the process is made easier if r? is

kept at the old larger value. As a compromise, the following is done:

If the program tried to reduce a to zero at

the k_ step and failed (no convergence), then

for the next two tries r?k is left unchanged.

In computer language this is done by counting the number of tries

to get a workable k t-_h operator using the variable ICOUNT. Thus at

each try,

ICOUNT = ICOUNT +1
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= 0
ak, 1

is the first try for the kth operatorak, 1

ak_ 1 / 0

then Eq. 4.34 is skipped for two tries.

etc.
_Tk,2'

That is, ak, 4 corresponds to

Comment 4.1: The above section makes it possible for _7 to

become large without a being reduced to zero. If the problem attemp-

ted is an impossible one, this will show up as an a that never reaches

zero. It is conceivable that a problem which is "almost impossible"

(final state very close to the boundary of the set of reachable states)

would also result in a nonzero final value of a. Equation 4. 1, the stop-

ping condition, now provides a logical test of when to stop trying to get

a to zero.

Comment 4.2: For research purposes, two decision constants

KPETA and ALPT were included in the program. Normal values for

them are,

KPETA = 2

ALPT = i. 0
(4.36)

However, if a change in the characteristics of the subroutine is desired,

these can be changed. KPETA is the number of times rTk is retained

at the value rTk, 1 as noted above. ALPT adjusts the rate at which the

linear slope a is reduced,

real Eq. 4.33:

according to the formula below (this is the

ll. .k]l1 . ALPT (4.37)
k : -=0(I II_ II1
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Optional Subroutines

Ho SUBROUTINE SSTRAJ

This rather simple subroutine computes the argument of the control

function and the trajectory in the state space.

The argument of the control function is

-A't
ARG(t) = b'e _k = Cl'(t}---_k

and the trajectory in the state space is,

t

x(t) = eAt[__ + f q(v)u k [ARG(T)]dT]

0

For computation, approximate discrete equations are used.

ARG(I) = q'(I)_ k (4.38)

and

1 6bUk [ARG(I + 1)]1 5bUk [ARG(I)]] +x(I + 1) = eAS[x(I) +_

(4.39)

The argument of the control function is printed out first, followed

by the state vector for the same (time) index I.

I. SUBROUTINE CKCON

The sufficient condition for convergence presented in Appendix B

is used in order to compute the parameter h. This allows a study of

how large h can be and still have convergence take place. Also it was

felt at the initial stages of this research that this information might be

a guide in choosing the sequence of operators Tk(__).

The required analytic expressions are shown in Sec. F, Ch. II. As

above, the integrals are approximated numerically using the trapezoi-

dal rule. A fortranfunation statement called BIG is used to find u(2) ,
max

the maximum value of (2) (.). The expressions evaluated by the com-
Uk+ 1

puter are;
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the first derivative inverse Fk,

M

7ij = -[ak+lWij(T) + 5

_=I

qi( _)qj( _ _u (1)• k+l
-1

(4.40)

and the norms,

n n

norm i 7ij -ak+l"

j= 1 h= 1

n n n M

Bnorm = max _ _ ' _ 7ih"_i

j=l k=l h=l g=l

M

Wjh(T)_ h- 5 _ qj( Q)Uk+l[q'(_k]] 1

I=l

(4.41)

qh ( _)" qj (J)" qk (£)1 " BIG F(u_2+)l)

(4.42)

n n n M

Cnorm = max _, _-_'i _, 'Yih" _ qh (_)"

j=l k=l h=l 1=1

qj(f )" qk (f)" u(Z)k+l[q'(l )--_k] I

(4.43)

Then the quantities

h=A "B
norm norm (4.44)

and

h I = A C (4.45)nor m nor m

are formed to check for guaranteed and estimated convergence.

J. FUNCTION BIG

This part of the program is a function instead of a subroutine. It

performs the relatively minor task of finding the maximum value of

U_:l('). Actually any of the subroutines which have no more than one

(scalar) variable in the argument (calling sequence) could have been

made into functions. However, this part is really subordinate to the

subroutine CKCON and deserves the lower rank.
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Newton's method is used to search for the maximum value, using a

good starting approximation.

Let

! _

X = tanh (rlk q a n k)

Y = tanh (nkq'__+_k)

TE = tanh (gTlk)

then the hyperbolic functions satisfy these relations

X+TE
Y =

l+X" TE

_= nk(l-X z)

_= nk(l-Y z)

so the approximate control

1
uk-

% and its derivative are given by,

[X+Y]

set

g(X,Y) = (l-Xg)(l-3X Z) + (I-YZ)(I-3Y z) = 0

using equation 4.46 this is reduced to a function of X alone.

X+TE .Z. X+TE _21 :
g(X) = (l-xZ)(l-3X z) + [ I-(i+ X.TE ) ] "[ I-3{I_-_._-E, j

(4.46)

(4.47)

0

(4.48)

_ 1
Uk II- _ Dk[l-Xg+l-Y2]

3
U(k3)= -nk [(I-XZ)(I-3xZ)+(I-YZ)(I-3y2)]

(2),
In order to find an extremum for u k the next higher derivative is

equal to zero. Define
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Finally, to apply Newton's method, the derivative of Eq. 4.48 is

needed.

X+TE )[Z-B(X+TE .Z. l-rEzd_(X) _ _4X(2_3X2)_4(l+X. TE
dX I+X'TE } ] (I+X. TE) 2

or using Eq. 4.46,

d_(X) _ iX(2_3X2)_4y[ 2_ 3y2] I-TE 2
dX ( l+X. TE) 2

As an empirical starting approximation, take

X
0 '1/4-3- 6an+an 3

• n <__.e8

,l/q-3( l-e -St/) r/ >. 28

(4.49)

Then the recursive relation for Newton's method is, using sub-

scripted i for convenience,

Y.

1

X.+TE
1

l+X." TE
1

(4.50)

and

Xi+l X.+--

z 4[ Xi(2_ 3X_)+Yi(2_ 3Yi2)( 1_ TE2)/( l+Xi. TE)2]

(4.51)

Equations 4.50 and 4.51 are to be repeated until there is neglible

change in X. In practice six iterations were used, although three ite-

rations were found to be sufficient. Once the iterations are finished,

value of U_kZ)(.'_ ) is given bythe maximum

BIG = rTk2(X-X3+y-Y 3) (4.52)

K. SUBROUTINE MITMR

This is a library subroutine used for measuring and recording real

time by using the IBM Interval Timer Clock. It is described in the

MIT Computation Center bulletin number CC-193-2. Only two com-
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mands have been used from this subroutine.

1. CALL RSCLCK-causes the clock to be set to zero.

2. CALL STOPCL(I)-gives the elapsed time from the last clock
reset, in 60 thsof a second.

L. SUBROUTINE XSIMEQF

This library subroutine solves the matrix equation

PX= Q

for the unknown matrix X.

By setting

Q= I

it was used to find the inverse of a matrix A. The full subroutine is

described in the Computation Center bulletin number CC-174-6.



CHAPTER V

COMPUTER RESULTS

A. INTRODUCTION

A number of computer runs were made to test the method and to

try it out on various examples. Some of the more enlightening ones

are enumerated in this chapter, together with their purposes and

chief results. General discussion of results is reserved for the next

chapter.

The runs are listed by plant (or state) matrix. In each case the

Jordan canonical form (see e.g., Zadeh and Desoer 98 or Athans and

Falb 4) was used, with the added requirement that all the entries be

real numbers. This means normal coordinates have been used for

clarity, so that the plant matrix shows the eigenvalues directly.

In this chapter an iteration of Newton's method will be called

just an iteration. A step from one member of the sequence of ap-

proximate operators {Tk} to the next will be referred to as a step.

In plotting the sequence of solution vectors (w-k) the step number

is indicated on the graph. Thus in Fig. 5.1 the 0 refers to the

vector w0, the solution of the linear operator equation T0(w ) = 0;

the l refers to the vector W l, the solution of the operator equation

TI(W- ) = 0; the 2 refers to the vector W-2' the solution of the oper-

ator equation Tz(w__) = 0; etc.

A summary of the runs made is given in Table 5. I. Detailed

information on the sequence of approximate operators {Tk(W__)} (the

steps and iterations) is given in Appendix C.

Some decision constants were experimented with early in the

testing and then standardized at what appeared to be reasonable values.

Thus a complex eigenvalue

A

k _ -a +jb
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leads to the form
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Table 5. 1

Computer Results

Run

No.

i

2

3

4

5

6

7

8

9

i0

II

12

13

14

15

16

17

18

19

2O

21

22

23

24

25

26

27

28

29

30

31

32

33

Name of

Plant
and Order

Double

Integrator

2

Single

Oscillator

2

Damped

Single

Oscillator 2

Damped
Double

Oscillator 4

Double

Oscillator

4

Double

Exponential

2

Quadrupole

4

Quadrupole

Oscillator 4

Triple

Oscillator 6

Mode

of

Ope ration
ICHO M

0 15

2 120

0 20

0 41

0 41

0 41

0 41

18 41

0 70

0 70

Z 40

2 I00

2 I00

I00

12 40

12 40

12 I00

I0 Z5

10 I0

IZ 40

12 40

18 100

18 41

18 41

12 100

12 100

1Z 100

1Z 100

12
100

10

12 40

12 i00

i0 40

C omput er
Time

Required

(Seconds)

Low

Average

High

High

Low

Low

Low

Average

Low

Average

22.9

48. I

50.Z

20.6

24.4

50.2

13.5

22.2

41.5

37.8

15.1

19.4

60.2

53.5

48.5

54.5

58.1

44.2

99.4

109.5

40.4

Conve rgence
of

Newton' s

Method

Good

Good

Poor

Fair

Good

Good

Good

Good

Good

Good

Good

Good

Fair to good

Good

Good

Good

Fair

Poor

Fair

Foor

Fair

Fair

Fair

Fair to good

Fair to good

Fair to good

Fair to good

Good

Good

Good

Good

Convergence
of

Outer

Loop

Good

Good

Fair

Good

Good

Good

Good

Good

Good

Fair

Good

Good

Good

Good

Good

Good

Good

Good

Good

Good

Good

Good

Good

Good

Good

Good

Good

Good

Good

Good

Degree
of

Difficulty

Easy

Easy

Difficult

Difficult

Easy

Easy

Easy

Easy

Easy

Average

Easy

Easy

Average

Easy

Easy

_asy

Ave rage

Impossible

Average to
Difficult

Difficult

Difficult

Ave rage

Average to
Difficult

Average

Average

Average

Average

Average

Difficult

Easy

Easy
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In terms of the computer program writeup of Chapter IV,

EPMTX -- l0 -6

EPS = I0-3

KPETA : 4

ALPT = 1.0

AMAX -- 10.

these are:

The value of ICHO depends on the mode of operation desired,

according to Fig. 4.3. There is a tradeoff between accuracy and

computer time, but the safe method is to use a large value for the

constant M, thus insuring high accuracy (M < 100).

B, DOUBLE INTEGRATOR PLANT

Two integrators in series form a plant like that of an inertial

there results,mass. With control acting on the acceleration,

01Ill
This is a very easy system to analyze. It was chosen for the first

set of runs partly because the results can easily be compared with

known analytic results.

__ = T = 15; A,b of Eq. 5.1

Run 1

Purpose: To check whether the sequence of operators chosen has

the property of sequential convergence. To compare the sequence of

solution vectors {g_k } with the solution vector ___ of the exact

operator. Finally, to determine the effect of allowing q to become

very large.

Results: See Fig. 5.1. The sequence of solution vectors {_rk} ap-

pear to lie on a straight line through the origin, and they also con-

verge within the numerical accuracy used to the optimal solution
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vector _ Sequential convergence took place at each step until

reached a value of 5, 627, at which point the first derivative became

too difficult to evaluate (too close to delta functions}. After the

sixth step (ri=8.8) only one iteration of Newton's method was needed

per step. This indicates that the sequence can be carried far beyond

_k converges topoint at whichthe

Run 2

r-,01

Purpose: To check a symmetric initial condition to Run i for sym-

metry of results. To examine the trajectories in the state space--to

compare those generated using the approximate operators Tk(W__} and

the exact operator T(_r__).

Results: The results seem exactly symmetrical to those in Fig. 5.1,

to within a very small roundoff error. A few chosen state space tra-

jectories are plotted in Fig. 5.2. It is apparent that as _k in-

creases, the trajectories approach the exact one. This plant is very

revealing because it produces corners in the exact state space tra-

jectory which are difficult to reproduce using a smooth control

function. From Fig. 5.2 one can also conclude that the fuel used by

the approximate controls converges very closely to the optimal value.

Run 3

Purpose: To try a different initial condition in the state space. To

examine again the upper limit for 0, the property of sequential con-

vergence, and the number of iterations per step.

Results: This run proved much more difficult than the two previous

ones. The minimum possible time to reach the origin from this

initial condition is T* = 6(l+Nf'2) = 14.48, so this run is very close to

the minimum time solution. In Run I, the minimum possible time
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was only T_= 8.93. At several steps the program required two at-

tempts to define the next operator Tk(ir ).

Just as in Run l, the vector _rk was very close to its final value

by the step where _]k was equal to 5 or 10. In the steps after that

very few iterations were needed. However in this difficult problem

it still sometimes required two attempts to define the next operator

Tk(_r ). Numerical difficulties seem to have set in when _ exceeds

19,450; probably due to the very inaccurate first derivative operator

obtained, Newton's method suddenly diverges.

C. SINGLE OSCILLATOR PLANT

A single degree of freedom oscillator without damping has the

system matrix below.

EiiI°lA = k = (5.Z)

- 0 1

This plant was chosen first of all because many physical problems

can be modelled by the spring and mass system. Secondly, because

it prepares for later work with a two degree of freedom oscillator.

Finally, this leads to variety; first a plant was used with poles at

the origin and now one with poles on the imaginary axis.

Runs 4, 5, and 6 were terminated as soon as _k > 2.

Run 4

-21 31r b of 5 2
= T = 4.7124 = T ; A, Eq. .

2

Purpose: To try out a different plant.

Results: The minimum time solution requires a time of T $ = 2_r

3_r 643 so this is also a difficult problem. At most-2Tan -1 2 = _ - .

of the steps, two attempts were needed to define the next operator
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Run 5

Purpo se :

i T = 9.4248 = 3w; A, b

To try another initial conditon.

of Eq. 5.2

Results: In this run the problem is not as difficult as Run 4,

Sin I 1 Tan-i 3
T _" = 3_ - _-- _----%- _ _3_ - 2. 835. Only once was it

necessary to redefine an operator Tk{_). The most difficult step was

the second one, which required redefining the operator T 2 and then

needed five iterations for convergence.

The sequence of solution vectors {__k } plotted in Fig. 5.3 still

lies on a straight line.

5-

4-

7r2
3

I-

0
0

I I I I I

I 2 3 4 5

Fig. 5.3 Graph of Sequence (El<}-Run5

Run 6

, T= 6.0; A, bofEq. 5.2
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To try another initial condition.

This run was easy. No redefining of operators was needed.

D. DAMPED OSCILLATOR PLANT

In this section tests are described on four different plants. Two

are single oscillators and two are double oscillators, all with real

(negative} damping.

The overall purpose is to try some tests on plants whose roots

have negative real parts.

A secondary purpose is to try a higher order plant. For plotting

purposes the vector _--k is split into two vectors of two elements each.

_34 =

Then w2 is plotted against

plotted against w3"

Run 7

131
4

w 1 , and as a separate graph ir4 is

A = , b --

l -.

E:I 3£ = T : 4.712.4 = _-_

The usual differential equation for this plant is

%;(t) + .2 _r(t) + 1.01 y(t) =u(t)
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Purpose: To test the method with damping present.

Results: One redefining of an operator was required.

number of iterations needed was 21.

The vectors _k no longer lie on a straight line;

slightly off.

The total

they are

Run 8

Pu r po se :

CKCON.

i-.II01A-- b =

-i -.II0

T = 6.2832 = Z'n"

To try another initial condition.

To compare the fuel costs.

To test the subroutine

Results: The trajectories in the state space were found to be too

close together to be worth plotting for comparison.

As _ was increased the fuel used ranged from 1.88 units down

to 1.46 units, a 23 percent decrease.

The parameter h from the convergence theorem of Kantorovich

was too high to guarantee convergence (convergence is guaranteed

for h < i/2), even though convergence did occur at each step. The

estimate of convergence h I had lower values, but was also gener-
l

ally larger than 2- " As shown in Fig. 5.5, there appears to be some

connection between the value of h I {or h ) for an operator Tk+l(_)

and the number of iterations of Newton's method required for con-

vergence to the solution of that operator. See also the results for

the Double Exponential Plant.

The sequence of vectors {_k } appears to lie nearly in a

straight line in Fig. 5.4.



-78-

4

½

3

i

I = I = I = I I I

0 1 2 3 4 ,5
7/"I

Fig. 5.4 Grophof Sequence{T.k} -Run8

.¢:

k-

z
uJ

o
..=,
>
z
O
U

3O

10

1.0

0.2

I I

o

h/j
x

t I
2 3

NUMBER OF ITERATIONS REQUIRED

Fig. 5.5 ConvergenceParametersvs. Number of Iterations - Run8
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Run 9

A _

m

I

-.II01

0
-.II01

-2
01[ilb =

2

-.II01

T = 6.Z83Z = Z=

Purpose: To try out the program on a plant with a four dimensional

state space.

Results: See Fig. 5.6. The vectors W k definitely do not lie on

straight lines.

4'

3

7r 2 ,W"4

2

Fig. 5.6

+/
J

7_

2_./g I

+ fxj
oo

7[i, 7T5

I I I I
I 2 3 4 ,5

7/" I ,7T3

Graph of the Sequence ('n'k} - Run 9

None of the operators had to be redefined.
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Run 10

A [ 1I01-5. -.5 0 5
= b =

0 -.6 I0. -- 0

-i0. -.6 6

[lO]

[i°ilT=8
_ = 10.

0

Purpose: To try a problem for which the state of the system has

many oscillations.

Results: The program in this case was somewhat conservative in

choosing the sequence {T]k}, so that no more than four iterations were

needed at any one step. By the time _k = l., the vector w__k had

become very close to its final value.

E. DOUBLE OSCILLATOR PLANT

This plant is characterized by the matrix

1010001A = b = (5.3)
-- 0 --

-CO

It can be described either as two single degree of freedom oscil-

lators having a common control or as a single oscillator with two

degrees of freedom. Note that the frequency CO is left as a parameter.

At this point the basic features of the program have all been

tested. Now questions of accuracy and some features of the problems

themselves will be examined.

There are four series of runs using this plant. Each series will

be described separately. A vector f is defined for use in these runs.

L45J
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I. Effect of Varying _ - Runs 11-14

In this series the frequency co is varied. As _--_ l, the two

oscillators become increasingly alike and therefore more difficult

to handle with one control.

= 2__, T = 12.5664 = 4w (5.4)

The purpose is to examine the changes in the sequence of ap-

proximate operators as the problem becomes more difficult.

A plot of the optimal control variable time history was also made

to illustrate how the nature of the control changes as the problem be-

comes more difficult.

Run ii: _ = 4, M = 40; Eqs. 5.3 and 5.4

Figure 5.7 shows the fuel optimal control history. The rapid

switching pattern is taken from the fuel optimal control for one oscil-

lator with _ = 4. This is superimposed on a slower pattern, re-

presenting the control for one oscillator with _0 = I.

+I

u*(t)

-I

nn_ Fin ,
UU" UU

Fig. 5.7 Graph of Fuel Optimal Control vs, Time Run 11

+1

_(t)

-I

I I-] t
11" 1

Fig. 5.8 Graph of Fuel Optimal Control vs. Time Run 12

+I
_(t)

-1
1

[ t
I I

Fig. 5.9 Graph of Fuel Optimal Control vs. Time Run 13
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Run iZ: 0_ = 1.5, M = I00; Eqs. 5.3 and 5.4

In Fig. 5.8 the fuel optimal control history still has somewhat

the same pattern as in Fig. 5.7 but it is obscured by the closeness of

the frequencies.

Run 13: _0 = 1.3, M = I00; Eqs. 5.3 and 5.4

In Fig. 5.9 it is no longer possible to detect the characteristic

pattern of Fig. 5.7. Notice that the control is on most of the time.

Run 14: _0 = 1.2, M = I00

The program was unable to reduce the slope a to zero, making

this either a very difficult problem or else an impossible one (_ does

not belong to the set of reachable states).

In Runs II and 12 the total fuel used is very nearly the same.

As _0 is further decreased to 1.3 in Run 13 the total fuel used rises

sharply, and for _0 = 1.2 the problem does not seem to have a

solution. This shows how the problem difficulty suddenly rises as

0_ gets close to one.

z EffectofVaryingllfllRuns15-18

These runs were made to explore the relationship between the

initial state vector i and the optimal costate initial condition vector

. In addition the routine for computing ! when given __ was

che cke d.

0_ = 4. , T = 4= (5.5)

Run 15: _ = .5f__,M = 40; Eqs. 5.3 and 5.5

The sequence of vectors {__k } converges to the true vector _

to within the numerical accuracy used as shown in Fig. 5.10. The

length of the computed vector _ is,

II ll 2 = 5.16
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5 0p

/

0 m I

0 I 2
7rh 7F3

Fig. 5.10 Graph of the Sequence {_k} - Run 15

#
Run 16: Ir = _, M = 40; Eqs. 5.3 and 5.5

Again the sequence of vectors {W_.k}

around the true vector Tr .

The length of the computed vector

converges to an area

is_

IIkll2 -- 6.50

Run 17: w = 2f__ M = 100; Eqs. 5.3 and5.5

This time the sequence of vectors {W_.k} converges more

closely to the true vector lr , due to the greater numerical accuracy

used.

I1_112= 6.91

Run 18: _r = 4f, M = 100; Eqs. 5.3 and 5.5

IfK[[2 = 7.21
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Conclusions: All of these runs are in the easy category. The

slope a was reduced to zero in one step and none of the operators had

to be redefined.

A plot of the initial condition vectors __ is shown in Fig. 5.11. It

is apparent that the repeated doubling of llw_"eII leads to diminishing

increases in II!ll as the available control effort becomes used up.

A plot of the fuel used versus lOgl0_ ] for these runs is shown in

Fig. 5.12. Notice how well the curves converge to the optimum

values .

3. Effect of Decreased Accuracy - Runs 19-20

A check was made of the effect of decreased accuracy on the pro-

cedure. This is done by decreasing M, which makes the integration

step size larger.

= 1.5, T = 2w, w = 2f (5.6)

Run 19: M = 25; Eqs. 5.3 and 5.6

A total of 33 iterations of Newton's method were required, more

than was needed for most of the higher accuracy runs using this plant.

Computer time consumed was 13.7 seconds. The sequence of vectors

{[k) in Fig. 5. 13 should be compared with the ones in Fig. 5. 10 or

perhaps Fig. 5.4 or 5.21. The sequence converges most closely to

Tr;' when M = 100, and rather far from w ':' in this run.

2.50

= 2.22

4.27

Run 20: M = I0; Eqs. 5.3 and 5.6

In this case the accuracy is so bad that the program quits. The

first operator does not lead to convergence in Newton's method, and

the vector K soon becomes so large that all eleven mesh points have

control of nearly 1.0 in magnitude. Then the first derivative no

longer has an inverse and the program quits.
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3

2

4

2 3

-_34

2

I x

I I I I
1 2 3 4 5

Fig. 5.11 Computed Initial Condition Vectors _ Runs 15-18

10

!

7

I

0.1

Run 17

x- -X_x _
J * = 9.55 ""X_x--

J* = 7.54 _

J* = 5.026

I I

_A_ Run 15

1 I I
0

I I I I I I I I I I f I

1.0

IOgl0 "r/

Fig. 5.12 Graphs of Total Fuel Used vs Iog.'r/kfor the Double Oscillator Plant-_ * Varied

Runs 15-1 7
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I
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l I I
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Fig. 5.13 Graph of the Sequence{__k} Run 19

100

8O

"rrz,-7/4
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5._

! 3,4/

/3y

_T/'_" 40 80 120 160

7/I '-7/3

Fig. 5.14 Graph of the Sequence {Ek} Run22
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very difficult runs. That is,

quadratically, the vector w.

each iteration.

The iterations show a drifting pattern characteristic of some

instead of converging or diverging

changes by almost a constant amount at

4. Effect of Nonunique

£=
67

93

- Runs 21-22

As noted in Chapter LII, Lernma 3. I, if the vectors

q{ti), i =1,2 .... m, do not span the space R n, then the costate initial

condition vector v;:" is not uniquely specified. With this plant,

T >w insures uniqueness, while T < _r/Z leads to less than n

switchings, and hence to a nonunique w". More precisely, two

switchings always occurred, leaving two degrees of freedom open.

Another test of this type was carried out on the quadrupole plant.

T =w/Z , M =40, w.':" =.5/__ (5.7)

Run 21: ¢0 =2; Eqs. 5.3 and 5.7

The sequence of vectors {W__k} still lies on a straight line, but

instead of converging inward toward the given _ the sequence moves

far out. Newton's method seems to have had no special difficulty in

converging, and the run seems about equal in difficulty to others of

its type with a unique _ .

Run 22: ¢o = 1.5; Eqs. 5.3 and 5.7

The sequence of solution vectors {W__k} is shown in Fig. 5. 14.

The linear term was a 0 = -1.31 and three operators were needed to

remove it. The median value of a 0 for runs using this plant was

between -. 20 and -. gl. Generally this run was a bit more difficult,

but similar to Run 21. The graph was made for this run, since it is

the more extreme case.
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Figure 5. 15 shows that the sequence of approximate controls still

converges, even though N Zkll z is increasing without any apparent

bound. The conclusion is that the method seems to work all right with

nonunique w .

dez [q'(t) "n'k]

';7k= 1.15

_Tk 2.29

I J
o T

TIME ( t )

Fig. 5.15 Graph of Fuel Optimal Control vs. Time - Run22

F. DOUBLE EXPONENTIAL PLANT

This plant has two real poles, one of them unstable.

A : _ B T : 2.0 (5.8)
- 1

The main purpose is to try out the procedure with an unstable

pole to see if any numerical difficulties are introduced. A second

purpose is to try out the procedure with poles on the real axis.

This plant has been analyzed in terms of the initial costate vector

w__, as shown in Fig. 5. 16. The sequence of controls shown may not
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be completed if the time T is too small. Thus if

the indicated sequence of control history is +l,0,-1. However for

T _ _n .5(_-3 - l) only the control +l occurs.

In Fig. 5. 17 a couple of typical trajectories in the state space are

shown. The state cannot be brought to the origin unless I Ell < I.

In practice the optimal costate initial condition _;:" was specified, to

insure that the vector _ would belong to the set of states reachable

at time T. As mentioned in Chapter IV, the vector Tr::"is then dis-

carded.

A third purpose was to try out the subroutine CKCON again and to

examine the convergence criteria. Figure 5. 18 and Fig. 5. 19 give

these results. See also Run 8.

Figure 5.20 is a plot of the fuel used versus lOgl0 _ for these

runs, which shows that the suboptimal controls come close to the

optimal in conserving fuel.

Run 23: w *'_ = M = I00; see Eq. 5.8

This costate initial condition was chosen to give a control history

of +l,0,-l. The sequence of vectors {Kk} in Fig. 5.21 converged

nicely to the true value v Notice that they do not quite lie in a

straight line. They seem to first increase on one line until a--_ 0

and then decrease on a line through the origin. So the linear solution

is not proportional to w .

This run was rather difficult numerically, in spite of the high ac-

curacy used. Some indication of this is seen in the large magnitudes

of the intermediate vectors of the sequence {Kk}. Two operators

had to be redefined. The 37.8 seconds of computer time used was

a large amount for a two-state problem.

In Fig. 5.19 the estimated convergence parameter h I is plotted

for each operator as a function of the number of iterations of Newton's

method required to converge to its solution. The largest values of h I
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were recorded for the two operators which lead to divergence in

Newton's method. There is also a tendency for low values of h I to

correspond to faster convergence of Newton's method. However this

does not always hold.

Run 24: _r = M = 41; see Eq. 5.8
.1

This run was chosen to have the control sequence +1,0, +1. It

was much easier numerically than the previous one. One operator had

to be redefined• The sequence of vectors {Kk} first moved in

beyond the optimal value K , then came back out to it.

In Fig. 5.19 the convergence parameter h 1 is generally lower

for a given number of iterations in this run than in either of the others.

Thus an operator with h 1 = 136 led to convergence in the last run,

while one with h 1 = 26 led to divergence in this run. So the smaller

values of h 1 tend to indicate easier convergence among the operators

of a l_iven run, but this property does not always apply to comparisons

between runs.

I:lRun 25: _r* = , M = 41; see Eq. 5.8

This run was chosen to have the control sequence 0, -1. So the

vector q(tl) at the switch time tI obviously does not span the space

R 2. The sequence of vectors {_rk} in Fig. 5.22 starts on one line

until a-*0, then approaches the vector _ along aline through the

origin. However in this run the last two vectors _k turned away

from _ , along a third line. So possibly the nonuniqueness of ___"_

had no effect on the sequence until it came close to _r and could

begin moving in the correct direction from Tr$ The overall graph

looks somewhat like aletter z.

In this run the largest values of h and h I occurred at the last

operator, and these values of h and h I led to convergence, even

though divergence occurred for two earlier operators with lower

values of h and h 1. Perhaps when _k is not completely constrained,

it is easier for Newton's method to converge.
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In difficulty this run was about equal to Run 24,

that the method works all right with nonunique __

again indicating

G. THE QUADRUPOLE PLANT

With a combination of the double exponential plant and the single

oscillator plant, a symmetric arrangement of four poles is obtained.

-1 0 10
0 -I 1

A = , b= T = 2.0 (5.9)
-- 0 l -- 00

-1 0 1

M= I00

When ¢o= i in the oscillator portion this plant was called a

quadrupole, having a Butterworth pattern of poles. For other values

of _0 the plant was called a quadrupole oscillator--the case ¢0= 4
is treated in the next section.

One purpose of this section was to examine the effect of having

too few switchings to span the space R4.
This plant with a real pole, an unstable pole, and an oscillator

is a rather general combination. Many other combinations could be
made of course, but this will be the most complex example studied

here. It is felt that additional poles and more complex arrangements

will be increasingly difficult to analyze, and will not contribute
much new information.

A couple of typical trajectories are shown in Fig. 5.23. A plot

of fuel used versus r7 for these runs is shown in Fig. 5.24.

Run 26: _ -- ; see Eq. 5.9

0
-- .

This initial costate vector was chosen to give enough switchings

to span the space R 4 and make __ unique. The control history is

-1, O, +1,0, -1.
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In Fig. 5.25 the vectors Trl2 and w_34 behave somewhat like

the vectors _k of the previous section, starting out in one direction

until a--_0 and then converging toward _ One difference is that

the two directions are no longer nearly parallel in this run. Also

the vector sequence _rk} does not converge very close to the

vector Tr Why it does not is still a mystery. With M -- 100 the

accuracy of the run is high, and the four vectors q(ti) at the switch

points do span the space R 4.

Run 27: 11" =

L5

; see Eq. 5.9

The designed control history for this run was 0, -I, 0, +I. The

sequence of vectors {_rk} shown in Fig. 5.26 goes in one direction

until a--* 0, then it changes direction. In this run there seems to be
.t.

no attempt to converge to the vector w" Furthermore the vectors

lie on curved (not straight) lines. Thus the effect of one degree of

freedom in W- seems strange in these two graphs, but might perhaps

be plain if one graph could be plotted in a four dimensional space.

.I.

Run 28: _r" =

!-I

0

0

3.

; see Eq. 5.9

The designed control history for this run was -1, 0, +1. With

the two degrees of freedom this gives, both the _12 and the W-34

plots shown in Fig. 5.27 moved far out along straight lines. Actually

the sequence first moved out, then part way back, and then out again,

giving the best example found of the way in which the sequence {Wk }

can depart from the vector _r;'" Even with this behavior all the

operators converged.
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Run 29: w":'

i.

.5

=
0

.0 j

see Eq. 5.9

The control history for this run was 0, +1, leaving three degrees

of freedom. The result looks a bit like a combination of the last two

runs. The sequence of vectors {irk} starts off in one direction until

a--_0, then proceeds along a straight line (but no.__t one through the

origin), and it does reverse direction along this straight line.

H. THE QUADRUPOLE OSCILLATOR PLANT

As a variation, the quadrupole plant is investigated with ¢_ = 4.

[100:]01A = b = T = 2.0 (5.10)
0 0

--4

The purpose was to extend the results of the previous section to

a plant with a less symmetric arrangement of poles.

0]

°lRun 30: lr _ = , M = 100; see Eq. 5.10

-I-

As expected, with the only nonzero entries in _r occurring in

the last two elements, the sequence of vectors {W.k} shown in

Fig. 5.28 had most of its magnitude and variation in the last two

elements (in _r34 ).

The run consumed 58.1 seconds of computer time. If the tra-

jectories in the state space are not needed (SSTRA5 is not used}

13.9 seconds of this can be saved.
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Run 31: ir =

-3

0

.5

1.5

The largest element of

-I01-

M = 100; see Eq. 5.10

_r is the first, and in Fig. 5.29 it is

{[k} which show thethe elements _i in the sequence of vectors

largest magnitudes.

As a side experiment, the same run was made with M = 25, i0,

and 5. These runs consumed 22.9 seconds, 13.0 seconds, and 20.6

seconds of computer time respectively. With M = 100, 99.4

seconds of computer time were required, although in this case the

state space trajectories were also computed.

Reducing M to 25 has a relatively small influence, while

further reduction in M to 10 produced quite a marked error, of

about 25 percent in the magnitude of the computed initial state _.

The sequences of vectors {_rk} reinforce the above conclusion.

For M = 100 and M = 25 the sequences were reasonably close to

each other. For M = 10, two of the operators had to be redefined,

giving a quite different sequence. Finally, with M = 5 the pro-

cedure could not be carried out successfully, in that the slope a

was never reduced to zero.

I. THE TRIPLE OSCILLATOR PLANT

A sixth order plant, consisting of three oscillators (or an

oscillator with three degrees of freedom} was examined briefly to

try out the procedure on a larger order plant.

m

0 I

-I 0

0

0 2

-2 0

0

0 4

-4 0

b

"0

i

0

I

0

I

T=2==12.5664
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The two runs performed were:

0 0

Run 33: .5 Run 34: I.
0 0

.-:.- .5 ;:.- Z.
M-- i00, __ = 0 M = 40, w = 0

I1. L 1 .

The results are similar to those for the double oscillator plant.

Again, the sequence of vectors {Wk} lies on a straight line from the

origin and converges to w_. (within the numerical accuracy used).

Run 34 required a total of 27 iterations of Newton's method and con-

sumed 109.5 seconds of computer time, including time to calculate

the state space trajectories. Run 35 required a total of 30 iterations

of Newton's method and consumed 40.4 seconds of computer time.



CHAPTER VI

DISCUSSION OF COMPUTER RESULTS

A. OVERALL CHARACTERISTICS

For almost all of the problems tried, a convergent sequence of

approximations to the optimal control was produced. In those few

cases where the slope a was not reduced to zero (and therefore the

sequence of vectors {_k ] did not converge to a solution of the neces-

sary conditions) it is suspected that no solution exists. However, see

the section on accuracy.

One of the strengths of the method is its flexibility. Thus when

Newton's method applied to a particular operator does not converge,

another operator is defined until one is found for which convergence

does result. As shown in Chapter Ill. this can always be done, and

in such a way as to lead toward a solution of the necessary conditions

of Pontrya gin.

The present computer program allows for any form of linear,

time-invariant plant (up to tenth order), and allows a choice of sev-

eral constants and special feature subroutines. A number of possible

extensions are described in the next chapter. The criterion for choos-

ing the values of _]k and ak appear to be efficient ones (they move

toward the optimal solution rapidly without running into divergence of

Newton's method too often), at least up through the sixth order ex-

ample studied. As might be expected, the most difficult step is often

the one in which the linear slope a is reduced to zero.

This program required relatively long running times on the digital

computer; some of the most difficult runs consuming a minute or

more on an IBM 7094. The times were made a little longer because

the M.I.T. timesharing system was in operation when most of them

were made, but this is thought to be a small factor. If computer time

were a major concern, a faster program could be written, but this

procedure was not designed for maximum speed of execution. Instead

it was designed for reliability and to give some information about a

set of suboptimal controls. In these areas the program did well, as

- I03-
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noted elsewhere in this chapter. Work could be done on a faster run-

ning program. One run was made with this idea in mind, and is

reported in Section C of this chapter. An attractive technique for this

purpose would be to vary the integration step size, by starting off with

a small value of M (say M =20, for instance). When the procedure

runs into trouble or nears the end of the sequence of approximate

operators, then the value of M would be increased.

The total fuel used was plotted against lOgl0r7 k, since the approx-

imate control function Uk(- ) is an exponential type of function. When

the parameter r7k reaches a value of _ = 5, usually the resulting cost

is within I% of J;:-',the optimal fuel cost. Note that the first operator

usually has a cost 5 to 30% greater than J;:',showing in practice the

efficiency of the approximate controls u k. The easiest runs, using

the least fuel, are worst in this regard, since the optimal control

u;:=(t)then chooses its on times more judiciously. Even in these cases

the approximate controls were quite efficient in the experimental runs.

B. EFFECTIVENESS OF THE APPROXIMATE OPERATORS

In Chapter III the approximate operators were examined from a

theoretical point of view. In Theorems 3.2 and 3.3 it was shown un-

der certain assumptions that the approximate operator Tk(_r;'._)can be

brought as close as desired to the true operator T(_r;:_),and in addition

the solution vector _k could be made as close to ____;:_as desired.

The purpose of this section is to add a few practical comments based

on the examples studied in Chapter V.

The sequence of solution vectors {_k } generally had moved

close to its final value when the parameter rTk had reached a value

of N = 2-5. Then the accuracy used in the digital computations be-

comes an increasingly important factor in determining the distance

between _k and _::_. As rTk increases beyond r7 = 10, usually only

one iteration is enough to meet the criterion for convergence of

Newton's method. If rTk is allowed to become very large {> 5000

in one case tried on the colnputer), another numerical difficulty may

develop. Just why this happens is not known, and since it has no

effect on the procedure in practice, it was not considered important.
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Since only controls from the class of feasible controls were ex-

amined, the plant had a smoothing effect on any variations in the con-

trol function. This was true even for the plant with an unstable pole,

and became especially true when the open Ioop equations were stable.

Thus a small variation in the control function or in the vector

causes an even smaller variation in the state space trajectory.

C. ACCURACY

i Integration Step Size

In the course of the numerical work, the question of accuracy

came up repeatedly. One obvious source of inaccuracy occurred in

carrying out the integrations numerically. A straightforward trape-

zoidal rule was used in approximating the integrals. More complex

schemes could have been used, and the interval size can be made

smaller in the trapezoidal rule; either of these approaches will result

in greater accuracy when using the simple rational integrands re-

quired. However, there is always some loss of accuracy, and its

effects need to be noted.

In Runs 11, 1Z, 19, and Z0 a study was made of the effect of

interval size or number of subdivisions in each integration. Another

study was made in Run 32, using the quadrupole oscillator plant.

Note that no matter how poor the integration scheme used; (1) the

state space still gets to the origin at time t = T for the modelused,

and (2) the run can always be repeated except for roundoff error in

the digital computer.

As accuracy was decreased, the number of iterations of Newton's

method required increased. The asymptotically quadratic convergence

noted in Appendix B is for the exact Newton' s method. With high ac-

curacy runs this property was found in practice. However, as the

accuracy goes down the iterations begin to stray and convergence

occurs at a lower rate. Of course this can also cause Newton's

method to diverge in a case where convergence would occur if higher

accuracy were used

There is a relation between how difficult the problem is and the

effect of inaccuracies. In Chapter VI, Section C.1 the difficulty of a

problem is mentioned. In a qualitative way this depends on the distance
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of the final state _ from the boundary of the set of states reachable

from the state _ in T seconds. Thus for a given plant and time T ,

the closer the final state _ is to the boundary of this set of reachable

states, the more difficult the problem is.

As the accuracy decreases the problem becomes more difficult.

Thus in Run 32, the accuracy was finally reduced (M = 5) to the point

where the problem became too difficult to solve, even though there

was no special difficulty with the problem when using greater accuracy

(M = I00 or 25). Usually this happens because the inverse of the first

derivative operator fails to exist.

This point is illustrated qualitatively in Fig. 6. l using two dimen-

sions. The plant, the final state e and the final time T are assumed

_2

States resulting in
Difficult Problems

using High Accurac

States resulting in Difficult
Problems using a Lower Accurac

Set of
Reachable States

Fig. 6.1 Diagram of Initial States_ and Problem Difficulty

fixed. Then there is a set of initial states _ for which the problem

is easy, one for which the problem is difficult, and another set for

which the problem is impossible. As shown in the sketch of Fig. 6. l,

using high accuracy results in a narrow band of initial states _ for
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which the problem is difficult. With reduced accuracy this band of

initial states leading to difficult problems becomes much wider.

Of course the digital computer has a limited accuracy which in-

troduces roundoff errors, so there is no hope of getting rid of this

region of difficult problems completely. In addition, the nature of the

procedure itself must introduce some difficulty. These two effects

are difficult to separate.

A great deal of work could be done in trying to evaluate the size

and effect of the difficult region. However, it should be sufficient to

know that the region can be made small (or narrow). This is indicated,

for instance, by Runs 15 - 18, which did not lead to any difficulty even

as the vector _r;:_was doubled.

If the procedure fails to work on a given problem, the first remedy

to try is to increase the accuracy. If the accuracy was already known

to be high or increased accuracy does not result in a solution, then in

most cases the problem will be found to be impossible. One way to

check this, of course, would be to compute the time optimal solution

and compare the minimum time T ;:_with the given time T ; if T;:" > T

the problem has no solution (is impossible).

Another effect of the numerical integration is to make the optimal

costate initial condition vector rr_:-"nonunique. Once a set of mesh

points is chosen, then any vector _ which yields the same value of

the control (+l,0, or -l) at each of these points can serve as an optimal

solution. There is generally a compact set of vectors W satisfying

this condition. The sequence of vectors {_rk} converges toward a sort

of average vector in this set W. Each vector _k is still unique if

the conditions of Chapter III (Assumptions 3.1 -3.3, and Lemma 3. i)

are fulfilled.

As a result of this the sequence of vectors {rrk} converges to a

solution of the TPBVP, a vector _;:"cW, but not necessarily to the

vector rr;:-"that was used in choosing the state initial condition _.

This can be seen, for instance, in Figs. 5.20-5.22, where the

sequence of vectors {_k} does not converge exactly to the given vec-

tor rr;:_. Also, as the mesh is made more coarse, the sequence {rrk}

may converge to a point further out from the given vector _;:-_.
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Z. Other Approximations

In addition to the integration step size, chosen by picking the

number of mesh points M, there are several other computer approx-

imations affecting the accuracy.
-At .

At the beginning of the program the matrix exponential e -- is

computed from the series definition, and the process is terminated by

choosing a constant EPMTX, as shown in Chapter IV. Any error

here will show up at every later step of the program, and will be dif-

ficult to find without a complete rerun of the problem. Also, this

calculation is only performed once. So a high accuracy is normally
-At

used (EPMTX = 10-6), which insures that e -- will be accurate down

to almost the level of roundoff errors.

For each approximate operator Tk(_) a constant called EPS is

used to decide when Newton's method has converged. Poor accuracy

here means each solution vector _--kwill be in error. This can lead

to divergence in trying to solve the next operator Tk+l(__). In an

extreme case it could even lead to acceptance of a spurious solution

for rrk. In most problems the quadratic convergence of Newton's

method keeps the error smaller than EPS. A quick calculation shows

that using the normal value of EPS(EPS = 10 -3) with quadratic con-

vergence yields an error in IIW_.kl[of 10 -5 or even 10 -6 if Newton's

method is carried out exactly. With integration and roundoff errors

(and also sometimes in difficult problems) this error may be larger.

An experiment was made with EPS = 10 -l (in the run reported below)

resulting in a little jitter in the sequence {__k } but no other noticeable

bad effects.

The sequence of approximate operators Tk(__) is terminated

when 1]k exceeds the constant AMAX. If AMAX is chosen too small,

the sequence will terminate before getting close to _r ':_ . Making

AMAX too large just leads to extra computations, although Runs 1

and 3 indicated that numerical troubles could result in extreme cases.

By the time Nk reaches a value of 2-5, the sequence {__k } has pretty

well converged, so taking AMAX = 10 seems to be a good value.

Finally, it should be noted that all of the above approximations

are involved in the trade-off between computer time and accuracy.

For example, in Run 30 the recommended values were used, and the
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run consumed 58. i seconds of computer time. Then the run was

repeated using

M = 25

EPMTX = I0 -6

EPS = .I

AM_AX = 2.

With these changes the run consumed only 8.0 seconds of computer

time, and the results only deteriorated a little from an engineering

point of view (final vector w_k changed by about 15 percent).

D. STRAIGHT LINE BEHAVIOR OF {W_k}

When the system (open loop) poles lie on the imaginary axis, the

sequence of vectors {W__k} was found to lie on a straight line through

the origin. This is true also for the fourth order and sixth order

examples in the vector spaces R 4 and R6, respectively. No reason

has been found for this. It is surmised (unproven) that the straight

line behavior will hold for any sequence of control approximations u k

having symmetry about the origin, acting on a conservative system

in a fixed time control problem.

A suboptimal control system can be designed for a linear, con-

servative system based on this straight line property: Suppose the

state of the system is given at time t = 0, and it is required to guide

the system open loop for T seconds, until the next fix on the state

will be given.

If the control were linear with slope a , then from Change 2, of

Chapter II, the costate initial condition would be,

1 I(T ) -AT= -w- [f-e O]
-- (1 _

= 1 W-I(T)_
Ct

(6.1)

The key of this design is to use the costate resulting from Eq.

6. l with the optimal control function -dez(.). Because of the straight

line behavior of {W_.k} there is some slope a for which this gives the
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optimal result. The effect of a is to determine NKI[ z'

the vector Tr. We set

u(t) = -dez [q__'(t)K]

-de_. [ _-q__'(t) W_-I(T)__]

the length of

(6.a)

It remains to choose the constant a. Clearly, the smaller a is

the closer the control to a time optimal one; the larger a is the

slower the control but also the more efficient in its use of fuel. The

safest way to pick a is by test of the system under field conditions.

With certain systems it may be possible to design a rule for

choosing _. For instance, in the single oscillator control problem

to the origin, the time optimal control reduces llx(t)H2 by about two

units every 7r/¢0seconds, so the minimum time T;'.-"is approximately,

ir

T* -- llz (6.31

One way to choose a would be to give the control argument a

magnitude based on the ratio T*/T . For example, let the magnitude

be 1.0 + T*/T. Then as T*/T--_ 0 the control effort also goes to

zero. For clarity this will be done in two steps. First, change the

magnitude of the argument to one.

-l
tt' (t) W (T)k

la' (o)w_-l(T)k]

Then multiplying by the chosen magnitude yields the desired

control.

w ff (t) W-I(T)_" 1
u(t) = -dez (1 + _ I[[llZ) - (6.4)

I_' (o)_w- l(T)__[

E. THE CONVERGENCE THEOREM OF KANTOROVICH

In Appendix B the basic theorem on the convergence of Newton's

method is presented. It is the keystone of the theoretical part of this

thesis, but proved to be of little use in making practical estimates of

the region of convergence. Some reasons why this is so are given

below.
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The main point is that the theorem provides only a sufficient con-

dition for convergence. This is fine for proving other theorems and

designing a safe sequence of approximate operators {Tk(_r)}, where

a guaranteed convergence is desired.

For the design of an efficient sequence of approximate operators

{Tk(_) } it would help to have a necessary condition for convergence.

Example B. 3 of Appendix B shows that the sufficient condition can

also be necessary. But it generally is not, and may, in fact, be very

far from necessary as is shown in Example B.1.

In the numerical computations two approximations were needed,

both of which made the sufficient condition for convergence even fur-

ther from being necessary. First, the required norm of the second

derivative operator has to be bounded by means of an inequality, as

shown in Chapter II, Section F. There are cases for which this upper

bound is exact, but it generally overestimates the norm.

Second, the norm of the second derivative operator must be eval-

uated over a certain region of the vector space of the vectors _, and

the maximum value taken. This was found to be very difficult, and a

rough upper bound was used. The resulting values for this norm

turned out to be very large especially for large values of n, so an

estimate of the norm was made for comparison. In the estimate,

instead of evaluating the norm for all possible values of _ in a region

around the starting guess _r0 , the norm is only evaluated a___tthe

vector _0" The estimated parameter is called h I , to distinguish it

from the guaranteed convergence parameter h.

Some numerical results are shown in Fig. 5.5, Chart 5.18, and

Fig 5.19. The figures are plotted with the number of iterations of

Newton's method required for convergence as the abcissa. At the

right-hand end of the abcissa a space is reserved for the divergence

of Newton's method. Note that the parameters h and h I usually

increase as the number of iterations increases.

The parameters h and h I are almost always larger than the

maximum value of I/Z allowed by the theorem. Yet, Newton' s

method converged in most of the cases shown. The parameter h

went as high as .4 x 10 6 with convergence still resulting. The esti-

mated parameter h I is about one order of magnitude smaller than h
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in Fig. 5.5. In Chart 5.18 it varies from about l-I/Z to 3-1/Z

orders of magnitude smaller than h, perhaps due to the unstable
root.

For a given plant the parameter h I could be used to make a
rough estimate of whether Newton's method would converge and how

many iterations would be required. Between two different plants the

prediction is not as reliable, especially as the number of dimensions

of the state space changes.

It was suggested that the parameter h be used, somehow, in the

practical design of the procedure. In retrospect, this idea seems
limited because :

I. The parameter attains such large values
in comparison with the value i/2 given
in Theorem.

2. It is not too reliable for use on many dif-
ferent plants.

3. It requires quite a bit of computer time
to compute it.

F. AN APPLICATION

Two physical problems are suggested as examples of how the

double oscillator plant might occur. The first is a simple mechanical

device consisting of two single degree of freedom pendulums, of dif-

ferent lengths hanging from a common support as in Fig. 6.2. If the

u(t)
-1 _ -J +1

m2

ml Fig. 6.2 Double Pendulum Example

support can be moved a limited amount as shown, then the problem

would be to get both pendulums stopped in T seconds.

Another problem is the small angle attitude control of an earth

(or other planet) satellite in a circular (or near circular) orbit. There
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are three axes of rotation, body centered as shown in Fig. 6.3. Dif-

ferential equations for the small angle motions have been derived by
23

DeBra and others, and are shown below.

Ii(0'l-f0 z) + f(I 3-Iz)(0z+f01) -- T 1 Yaw

Iz(b'z+f0 1 ) + f(Ii-I3)(bl-f0z) :-3fZ(I3-I1)0z+T2 Roll

138"3 ---3f2(I2 - I 1)03 + T 3 Pitch

where f is the orbital frequency. (6.5)

The pitch equations are independent of the others, making control

about thataxis a separate, simpler problem. A separate control

Fig. 6.3 Satellite in Circular Orbit

thruster might be used for this axis. Solutions for the single oscillator

problem that results will not be considered here.

The remaining equations are now written in matrix form.

Let
T I T 2

- u 1
f211 f212

- u 2

13 - 12 13 - I1
- Ct

Il 1 12

and make a change in the time scale.
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dx

d:
= I T

1

f

dx

dt

Let x =

0
1

ol

o;

Then the yaw and roll equations become

I

x = Ax+u

or

I

X

0

-(1 1

0

0

1

0

0

-1
a 2

0

-4a 2

0 0

0 1 -a 1

1

0

0

u 1
x+

0

_u2 _

(6.6)

For further transformation, the natural frequencies will be needed

4 cog = 0 (6 7)
det [A-coI._] = co +[1 +3a z+al" z] +4Ctla 2

Let co1 and COg be the solutions of Eq. 6.7 with cog > co 1 . In order

to have the form used in the computer examples (one frequency equal

to 1.0) a second change is made in the time variable.

Let

T = col_ = fc0It (6. 8)

SO

dx dx dx
-- l -- 1 --

dT -- co do- fco d t
1 1

Finally, a change in the state variables, called a similarity trans-

formation is made in order to decouple the two natural modes of vibra-

tion. Suppose, for instance, that only one control is available, exerting

a thrust about the roll (02) axis. Then the appropriate transformation

would be
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y _ PX

where

2
¢ol(a I-co2)

al(l-a I)

i -a I

0

al(1-a 1 )

2

al -col
0

l-a
i

The resulting vector equation is then,

4a 2

col

O. 1

4a 2

co2

0 1

(6.9)

i

0

-1

0

co2

col

_2

1

y+ T z (6. 10)
0

where T 2 is the control torque about the roll axis.

In evaluating the difficulty of controlling a given plant three factors

are important. The first is the ratio of the two frequencies c0? and

coI from Eq. 6.7. As this ratio approaches 1.0, the plant becomes

more difficult to control. The second is the magnitude of the entries

in the similarity transformation matrix, Eq. 6.9, which determines by

how much a given initial condition [ on the state vector is magnified.

Third is the time scaling in Eq. 6.8 which determines by what factor

the given terminal time T is scaled. For any given problem, all

three of these factors must be taken into account.

The control task can be made easier by careful design of the satel-

lite's principle moments of inertia. 13 should be greater than I2 and
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also greater than II in order to have two oscillatory modes. Other-

wise the roots become real, and one of the pair will be unstable.

Also, 13 should not be too close to the sum of I1 and IZ, in order to

avoid large entries in the similarity transformation matrix 6.9.



CHAPTER VII

GENERAL DEVELOPMENT OF METHOD

In this chapter the fixed time, fixed terminal state optimization

problem is examined. The steps undertaken are similar to those in

Chapter II, but here the more general relations are shown. A re-

stricted version of the problem is then defined, and the simplifica-
tions that result are pointed out. The purpose is to show in some

detail how the approach of Chapter II can be applied to a more com-
plex problem, and to point out some of the difficulties that result.

Some alternate approaches are pointed out. Chapter VIII shows how

this approach can be extended to some other classes of problems.

Ao PROBLEM Z

Given :

(a) A system (plant) described by the nonlinear vector differ-

ential equation, the state equation.

(7.1)£(t) = f(x(t),u(t),t)

A fixed time interval

tE [ t 0, t 1 ]

(b)

(c) Initial and terminal boundary conditions on the state vector.

o) : i

x(tl) : e_

(d) The control variable must satisfy a constraint.

u_(t0,tl] 6 U(t0,tl ] (7.2)

In most cases the set U t of allowable controls at time t

will be bounded and convex. It is also assumed that the

control function u(t) is piecewise continuous on (t0,tl].

-117-
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(e) A cost functional in integral form.

tl

J(x,u) = J L(__(_), u_(T), _)dT

t o

(7.3)

Then:

It is desired to find a control u*(t) that:

(a) Satisfies the constraint 7.2.

(b) Transfers the system 7. 1 from the initial state

at time t =t O to the terminal state O at

time t = tI •

(c) Minimizes the cost functional 7.3.

This set of conditions will be called Problem 2. It is in the form

of a problem of Lagrange in the calculus of variations, since the func-

tional to be minimized consists of an integral.

If the given terminal state O happens to be an equilibrium point,

of the state equation 7. I, then Problem 2 is called a regulator prob-

lem. In particular, there usually exists at least one linear trans-

formation of the state variables x(t) which makes the state equations

homogeneous for u(t) = 0. Then x = O is an equilibrium point, and

the terminal boundary condition x(t l) = O leads to a regulator problem.

B. THE TWO-POINT BOUNDARY VALUE PROBLEM':"

The relations deduced by applying Pontryagin's Minimum Prin-

ciple to Problem 2 are summarized below. See Appendix A, Section

7 for a statement of the Minimum Principle.

H(x,u,p,t) = L(x,u,t) + p'(t)f(x,u,t) (7.4)

_(t}
aH

ap_(t)
- f(x, u, t)

The two-point boundary value problem will be abbreviated to TPBVP.
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aH _ 8L "_-[8_I \ '

i?(t) = - ax(t) ax(t) -_8_-_) • p(t) (7.5)

or j_(t) = g(x,u,p, t) (7.5a)

x(t 0) = _ (7.6)

_(t 1) = 0 (7.6a)

and the relation for the optimal control

H(x*, u*, p*, t) <_ H(x*,u,p*,t) for all ucU t (7.7)

Comment 7:1 As in Chapter II, knowledge of rr".', the costate
m

initial condition vector is sufficient to reduce the TPBVP to an initial

value problem (which requires 2n straightforward integrations).

Relation 7.7 may or may not have an explicit soiution for u*(t)

in terms ofx*(t) andp*(t). In many cases of practical interest it

does have one. If it does not, the operations shown below can still

be carried out, but relation 7.7 has to be carried along as an extra

equation. In order to avoid this and keep the exposition simple,

Assumption 7.1 is made.

Assumption 7:1 Relation 7.7 has an explicit solution, written as

u_*(t) = v[x*(t), p*(t), t] (7.8)

xR x[t0,tl], except possiblyand well defined on the product space R n n

for a set of measure zero. See Chapter III for a discussion of the

singular control problem.

Now the controI terms can be eliminated from the state and co-

state Eqs. 7.1 and 7.5a, using relation 7.8.

_(t) = f(x,v[x,p,t],t) (7.9)

)_(t) : g.(x,v[x,p,t] ,p,t) (7. lO)

Equations 7. 9 and 7. i0 with the boundary conditions 7.6 and 7.6a

constitute the TPBVP. For simplicity, these two sets of n equations

each, are combined into one nonlinear vector equation of dimension 2n.
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and

[_-(t) ty(t) .....

2(t) = h(y(t),t)

(7.11)

(7. ig)

A solution of the TPBVP is called an extremal solution of the

original problem.

C. INTEGRAL EQUATION FORM

Because of the general nonlinear character of the Eq. 7. 12, they

cannot be handled and transformed with the assurance possible in

Chapter II, Section C. Nonetheless, certain formal relations can

be written which are valid in many cases. The final integral relation

is of the Fredholm type, but the transformation will be made in two

steps, to indicate more clearly the

First consider Eq. 7. 12 as an

Then if a solution exists,

difficulty involved.

initial value problem, with

= L (v.13)

it must satisfy the Volterra integral equation

t

_(t) = ._. + f h(._(T),T)dT (7. ]4)

t o

A Lipschitz condition at each time t and an absolute integrability

condition are sufficient to guarantee a unique solution z(_,t) to

Eq. 7.14 (for a simple exposition see e.g., Tricomi 92 pages 41-47), °

This can be written as the result of successive approximations using

Picard' s method.

Let z0(__,t) = __ (7. 15)

t

and Zk(_,t ) _- _ + f h(Zk_l(_,T),T)dT (7. 16)

t o
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Then under the conditions above

t

lira { Z_k(___, t) - t - f
k --_ oo

t o

and z(_, t) is defined by

h(Zk( _, T), T)dT} = O

for all te[t O ,t 1]

z(_,t) = lira Zk(K,t ) (7.17)
k---* oo

In order to meet the terminal boundary condition 7.6a, the solu-

tion 7. 17 must satisfy

[I i O] z(_,tl) = _ (7. 18)

The operator T(w) is then defined by

T(K) = [I iO] z(._,tl ) - O (7. 19)

Finally, Problem 2 has now been replaced by the problem of choosing

the costate initial condition vector _ , such that
m

T(K) = O (7.20)

D. SEQUENCE OF APPROXIMATE OPERATORS

The same kinds of changes made in Chapter II, Section D, can

be made here. However, there is now a much greater choice in the

way the changes are made. There are k control variables, the con-

trol variables may enter the state equations in nonlinear ways, and

there may be nonlinearities among the state variables. Approxima-

tions are considered for all possible nonlinearities.

Change 1. Each control variable ui(. ) is a scalar function of

the costate vector, the state vector and time. The form of the

argument may be much more complex than the inner product found

in Chapter II.

Usually each control variable is a piecewise continuous function

of its argument. Then the theory of approximations states that a

sequence of approximate functions can be found that converges (at

least pointwise) to the given control function. There are d control

variables and hence d approximating controls.
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Change Z. The control variables may enter Eq. 7. 12 in non-

linear ways. Also there may be nonlinearities in Eq. 7.12 not involv-

ing the control variables. In order to be sure of finding a sequence

such that Newton's method converges when applied to each member

sequentially, all the nonlinearities must be approximated in the

sequence. If, however, it is suspected that some of the nonlinearities

have little effect, it may save time to try Newton' s method without

approximating these.

Change 3. In order to start the procedure a linear (or nearly

linear) operator should be used. This should be constructed so that

it is a natural result of "spreading out" the nonlinearities until they

approach linearity.

All these changes lead to a sequence of approximate operators,

the k th one of which is denoted by

Tk(__) (7. 12)

Each Approximate operator has some approximate functions (changes)

of type i, denoted by subscripts

_,_,i ......

and some of type 2, denoted by subscripts

_,_,_ ......

Just as in Chapter If, the procedure is to start with a linear (or nearly

linear) operator and proceed by steps toward the given operator T(__).

It is desirable to have the approximate functions of type g become

exact early in the sequence if possible. If a subscript zero stands for

a linear approximation, and the subscript oo stands for the exact

function, then a typical sequence might have the subscripts below:
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0 1 Z 3 _-I l

0 _i _2 _3 ..... _ -1 co

0 01 02 03 0__ 1 co

0 il i2 i3 il -I co

0 _1 ag oo oo co

0 8: 83 co co

0 co co co co co

(linear ) (exact)

However, there is a wide range of variation possible in handling

a general nonlinear problem, and the above schema is only a sug-

gested approach. The size of the steps to be made is a matter of

experience. There is, of course, a safety feature:

1. Suppose that step k was too large, so that

Newton's method diverges on the _ operator.

2. Then simplYhChOose a smaller step and re-
define the k _'" operator.

3. Now use the solution vector _k ] again to start
Newton' s method on the new--k th operator.

E. APPLYING NEWTON'S METHOD

Newton's method is to be applied to a typical operator Tk(__).

As in Chapter II this amounts to linearizing the operator T k about
i

the present iterate K , and solving for the zero of the resulting

linear operator. The recursive relation is the same as Eq. 2.21.

i+l i k(1 - 1 Tk(_r i)__ = E - [ T )(__i)] _ (7.22)

The definitions of a derivative and an inverse in function space,

given in Appendix B, are to be applied to evaluate the derivative of

the operator T k and the inverse of the derivative operator. This

may be difficult to do. Two kinds of behavior can arise:
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If the initial value problem 7. 14 leads to

an analytic or closed form solution for

y(t) for all values of_ then the operator

Tk(W) can be expressed in analytic or

closed form. It may then be possible to

express the first derivative and its in-

verse in an analytic or closed form, so
that relation 7. Z2 is a known vector func-

tion to be evaluated at each step.

If the initial value problem 7. 14 does not
lead to a closed form solution for all values

of _ or if that solution is too complex to be
useful in forming relation 7.2Z, then Newton's

method cannot be carried out exactly {or at

least not conveniently so).

I. Approximate Newton' s Method

In the second case above, an iteration scheme which does not re-

quire the derivative should be used. There are many such methods

possible and a considerable literature exists. For a simple treat-
31 40

ment the books by Froberg, Henrici, and Fox 30 might be men-

49
tioned. The book by Kantorovich and Akilov, and that edited by

3
Todd provide more advanced and additional n:aterial.

One of the schemes available utilizes a "moving secant" as a re-

placement for the derivative.

For an ordinary function in one dimension,

T(x) : 0

the recursive relation is

x i+l = x i _ T(x i) -T(x i-l) . T(x i)

L xi x i-I

(7.z3)

A similar method using a "fixed secant" should be mentioned. Its re-

cursive relation is,

x = x - )- T 0) T(xi ) (7 Z4)
l

X X

The fixed secant method is simpler, but does not generally converge

as rapidly as the moving secant method. Neither of them has an

asymptotic convergence as rapid as that of Newton's method.
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.th
These methods can be adapted for the vector case. Let the 1m

element of the vector operator T(K ) be denoted by T(lr)i. As noted in

Chapter J_I, the derivative of the operator T{Tr) is a matrix, the ij th

element of which is

aT(K) i

a _r.
J

To estimate this matrix by secants requires (at least} n+ 1 evalua-

tions of the operator T at different values of v. Then the matrix

must be inverted. Because of this lengthy procedure, the larger n

is the more attractive the fixed secant method becomes as compared

with the moving secant method. In practice, the two can be mixed,

i.e.,

Start with one step of the moving secant
method, then add several steps using the
fixed secant. Now reevaluate the secant ma-

trix for another step of the moving secant
method, then add several steps using the new
fixed secant, etc.

One method of finding the secant matrix is as follows:

Let the present estimate of the solution be a

vector -_0 • Form n other vectors w. by adding--j.th
a small quantity 6 to the 2m component of lr 0 .

Evaluate the n+ 1 operators

T(Kj) j : 0, 1 .... n

Then the desired secant matrix is

-_- = T(W_l ) " T(K 0) ..... T(En) " T(w__0 (7.2s)

Thus the moving secant method is
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I ]'
i+l i AT(_ri)-- "

_- _ (7.Z6)

As a final note, it should be mentioned that there is a n_ethod
4O

called Steffensen's iteration, outlined in Henrici, Chapter 5 , Sec-

tion 9. Henrici states that "Substantial experimental evidence, and

also some theoretical considerations, seem to indicate, however,

that the algorithm is indeed quadratically convergent in a large number

of cases, even when ordinary iteration diverges." The good conver-

gence properties noted should make this an attractive alternate to the

secant method outlined above.

F. A SIMPLER PROBLEM

Problem 2 as stated is very difficult to work with. By suitably re-

stricting the form of the plant equation 7. 1 and the cost functional 7.3

one can guarantee an analytic expression for the operator 7. 19. Then

the recursive relation for Newton's method also leads to an analytic

expression. This avoids any necessity of resorting to the approxi-

mate methods mentioned in Section E, although the analytic expres-

sion can be so complex that the approximate method is easier to

handle.

Suppose the Hamiltonian 7.4 is linear in the state variables and

has no state variable-control variable cross-products. Then the co-

state half 7. 10 of the two-point boundary value problem is independent

of the state. One way to insure this is as follows:

Problem 3

Similar to Problem 2. except that the state equations have

the form

_(t) = _A(t)x(t) + f(u(t),t) (7.27)

and the cost functional has the form

t
l

J(u_) = f

t o

L(U(T), T)dT (7. Z8)
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Now let us find the operator T(__) for this restricted problem.

First of all the Hamiltonian is,

H(x,u,p,t) = L(_u,t)+ 1y (t) A(t)x(t) + p' (t)f(u,t) (7.79)

and the costate is governed by

_(t) = -h' (t) p(t) (7.30)

The main point of this restricted problem is that the costate equations

can be integrated separately. Since they are linear, there is a fun-

damental matrix _b(t,t0) such that

p(t) = __(t,t0) K (7.31)

for any initial condition vector Tr . Consider the fundamental matrix

(_(t,t o ) of the linear part of the state equations. That is

implies

__(t) = A(t)x(t)

x_(t) = _b(t,t0) _

The costate equations are the adjoint to this, so that (see for example
4

Athans and Falb, page 147).

___(t,t0) = qb'(to ,t) (7.32)

Substituting Eqs. 7.32- into 7.31 yields

p(t) = _'(t0,t)_ - (7.33)

The two-point boundary value problem proceeds as before, except

that the form of the Hamiltonian 7.29 leads to an optimal control rela-

tion u* which is not dependent on the state of the system.

or with Eq. 7.33

Substituting Eq.

u_*(t) = v[p*,t]

u*(t) = v[(_ t(t0,t)Tr':',t ]

7. 34 into the state equations yields,

x(t) = A(t)x(t) + f(v[_'(t0,t)w__':-',t ],t) (7.35)

(7.34)
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In a formal way, the composite nonlinearity g is defined such

that

g[.,t] -- f(v[',t],t)

It is assumed that:

_f : R d x[t0,t 1]--_ Rn

and v : R n x[ t O , t 1 ] _ Rd

except possibly for a set of measure zero, so that the operation can

almost always be carried out. Then a composite function does exist,

except possibly on a set of measure zero.

Finally, the state equations, 7.35, have the integral form

t

x(t) = !k(t,t0 )_+f !k(t,T)g[!k'(t O ,T) K,T] dT (7.36)

t o

SO that the operator T(E) becomes,

T (__)

t
1

_- f qb(tl,T)g[qb'(t0,T)_,n-]dT-0 (7. t7)

t o

and the recursive relation of Newton's method can be written clown

explicitly.

i+l
W =

As in Chapter II, the first derivative is a matrix

I t

w_i- /

t o
--

1

¢(tl,v)!_ _(to,V)g(1)[¢' (to,T)Tri,v]__d

t
1

+ f ¢(tl,v)li[!_'(to,V)Tri,v]_ dT)

t o

(7.38)

g(1)In this case [-,t] means the derivative with respect to the

first argument, holding the time fixed.



-129-

Comment 7:2 An alternate formulation has been published by
97

Witsenhausen, pages 9-i0. In this application the state and costate

equations would be combined into one set of 2n equations y(t).

Assume these equations have some linear terms, so that

_r(t) = A(t)z(t ) + f(y_(t),t) (7.39)

The boundary conditions are given in a more general form

Ny(t 0) +My(t 1) = c (7.40)

Use Eq. 7.40 to eliminate Y(t0) from the fundamental solution of

Eq. 7.39. The result is a (vector) Fredholm integral equation

t
1

y(t) = Gl(t)c +f G(t,v)f(y(T),T)d. (7.41)

t o

where

Gl(t) = _(t,to)[ N__ + M____(tl,tO) ]

-1

G(t,v) =,

r G__I(t)N_(to,T)

-G__I (t)M q_(t 1 ,v)

for T < t

for T > t

Assuming, of course, that the matrix [ N__+___M_(tl,t0)] has an in-

verse. This formulation is more general than the one used in this

thesis.

In summary, it is possible to treat the much more general Prob-

lem 2 by an approach similar to that used in Chapter II for Problem I.

However, one cannot handle the relations with the same assurance.

There may be more than one extremal solution; the operator T(_w) may

be so complex that Newton's method is difficult to handle; an analytic

expression may not be available for the form of the optimal control

u::-'(t);and so on. One conclusion is that there is a trade-off between

the complexity of the problem handled and the ease of carrying out

this approach.



CHAPTER VIII

POSSIBLE EXTENSIONS

There are a number of ways in which the procedure and the com-

puter program can be changed and extended to accommodate different

problems. Some of these are described in this chapter. The changes

described are not mutually exclusive; that is, several of them might
occur in the same problem. With some of these extensions the con-

vergence and uniqueness properties shown in Chapter III are no

longer guaranteed.

A. SEVERAL CONTROL VARIABLES

One of the easiest extensions to make would be to change to a

vector control variable. The scalar u becomes a vector u and the

vector b becomes a matrix B. All the equations of Chapter II

carry through with this change. For instance the state equations are,

_(t) = Ax(t) + Bu(t)

and the control components are

* ' -_a't)
u.i(t) = - dez (bi_e _ (8. i)

.th
where b. is the 1--column of the matrix B. It is assumed that each

--].

component of the vector u is constrained to lie in the interval

[ -1, + 1]. A better way to formulate this is to define the vector
.th

deadzone function, whose 1--component is the deadzone function of its
.th
i-- argument.

* -A't
u_ (t) : -DEZ (I_e rr) (8.2)

From the computational point of view, the main change is that in-

stead of having a vector function q(t) to store, there is a matrix

function __Q(t) to either store or else compute at each iteration.

-At B_Q(t) : e_- _ (8.3)

-131-
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The costate initial condition w is still a vector, and so many of

the graphs will be similar to those from Chapter V.

B. TIME VARYING EQUATIONS

If the equations of state are time varying but still linear the

matrix exponential is replaced by the more general fundamental

matrix _{t, t0). In this case the time interval will be indicated by

[t0, tl] . Once the fundamental matrix is computed and the vector

function q(t) stored the computation proceeds as shown in Chapter II.

One straightforward way to compute __-l(t,t0) is directly from the

differential equation.

_(t o,t o ) = ! (s.4)

and _'(t0, t) = -A'(t)_'(t0, t) (8.5)

step

After the matrix _b(t0, t) = _-l(t, to) is computed for each time

ti, the vector q(ti) is stored.

q'{ti) = k,!k,{to, ti) (8.6)

The matrix _'(t0, ti) does not need to be saved. However at the

final step the matrix _'(t0, tl) should be transposed and saved for
-AT

use where e-- was used in the original program.

C. DIFFERENT COST CRITERIA

Suppose the cost remains a functional only of the control variable,

plus perhaps the time variable and/or a linear combination of the state

variables. For example, let

t
1

if(u) =f

t o

g(u(¢), ¢)d. (8.7)

then the Hamiltonian becomes,

H(x, u, p, t) : g(u(t), t) + p_'(t)Ax(t) + p_'(t)bu(t)
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The expressions for the costate and for the optimal control do not con-

tain the state variables. If the expression for the control can be

solved explicitly for the control variable, one has the equation below.

u (t) = h(p_(t), t) (8.8)

Since the Hamiltonian and the control variable are scalar functions,

Eq. 8.8 involves solving a scalar algebraic equation. Ifi most ex-

amples of interest this function will have some finite number of dis-

continuities. As is well known from the theory of approximations it

can then be approximated as closely as desired, in the L 2 norm on

any bounded subset in the space of its arguments Rnx[t0, tl], by a

smooth function (having derivatives of all orders).

With this in mind, a sequence of approximations should be de-

signed which converges to the optimal control relation 8.8, similar

to the sequence {uk(t}} in Chapter II. The exponential form used

there is convenient, but see Section D of this chapter for some other

possible approximations.

Once the approximate control functions have been fixed, the

computations proceed as in Chapter II.

D. CHOICE OF APPROXIMATE CONTROL FUNCTIONS u k

The exponential form of approximate control function chosen in

Chapter II is convenient, but there are many other possible ways of

forming the approximation. A few possibilities are described below.

1. Distribution functions would provide a possible way of form-

ing the approximation. These "generalized functions" were developed

by Schwartz, 88 and are presented by Zadeh and Desoer 98 in Ap-

14
pendix A, and by Beckenbach in Chapter I (by Erdelyi). Their

chief advantage lies in the theoretical framework which insures that

any distribution function possesses derivatives of all orders. Since

the optimal control function u (.) is the sum of two step functions,

its derivatives do not exist in the ordinary sense, but are sometimes

represented symbolically by delta functions 6{t) and their deriva-

tives 5{n)(t). By definition the delta function is the derivative, in

the distribution sense, of the unit step function.
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d
6(t) _ dt l(t)

d dez(t) =
so that d-_

d 2
and _ dez(t) =

dt2

etc.

6(t-l) + 5(t+l) (8.9)

6(1)(t_l)+ 6(1)(t+i)

A typical approximate function and its first derivative are shown

in Fig. 8.1. Notice that the approxirr_te function u k is identical

uk (z)

uk (z) I_
k__'__

 tu.(z )

Z

Z

Fig. 8.1 Distribution Function Approximation to the Optical Control

with the optimal function u except in the intervals near its dis-

continuities.

If a sequence of approximations to the optimal control function

u (.) is formed by using distribution functions, the derivatives are

guaranteed to exist for each member of the sequence as well as for

its limit. Thus a theoretical justification is available for the appli-

cation of Newton's method to the exact operator T(Tr_). In addition

the convergence theorem of Kantorovich can be examined using the

exact operator, although the approximation used in Chapter VII in

bounding the norm of the second derivative operator would yield an

infinite value for the convergence parameter h.
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2. A polynomial could be used for the approximate function.

Much is known about the properties and use of polynomials as approxi-

mating functions. Since the function to be approximated is odd (not

even) only polynomials of odd order would be used. As before the

sequence would start with a straight line approximation--a first order

polynomial.

One way to proceed would be to increase the order of the poly-

nomial by two with each new member of the sequence. The coef-

ficients must be chosen so that the sequence converges toward the
.L.

optimal control function u"(.). If any operator has to be redefined,

the coefficients of that polynomial are adjusted to reduce the distance

between it and the previous polynomial. In this case it might be ad-

visable to use two or more polynomials of the same order. Otherwise

the general polynomial Uk(X ) would be,

2k+ 1 2k- 1
Uk(X ) = akx + ak_lX + ... + a0x (8.10)

,

control functions

function.

Several stages can be used in the sequence of approximate

{Uk}. For example: Start as before with alinear

u0(z ) = a z

Break the abcissa into an outside part for I zl > 1 and an inside

part for I zl < 1. Now using three straight line segments, bring the

slope to 1.0 in the inside segment and reduce it to 0.0 in both outside

segments as shown in Fig. 8.2. This may be done in several steps if

Uk(Z)

+11

"" "" I_Second S._eC
Intermediate Step

I

Z

Fig. 8.2 Straight Line Approximate Control Function
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it requires more than one member of the sequence to assure se-

quential convergence. Finally, reduce the slope of the "inside" seg-

ment to 0, producing discontinuities at z = ±1.

The chief disadvantages are that discontinuities must be handled

in using Newton's method, and the convergence theorem of Kantoro-

vich gives infinity with the bound used on the second derivative oper-

ator. The advantage is the greater ease of computation with straight

line segments. With the linear time-invariant plant the integration

can be done analytically for each segment.

4. A family of empirical curves can be used for the sequence of

approximate controls. Suppose a control system is being designed to

approximate the action of the fuel optimal control. Clearly by

spending more money to make the control device larger or more

intricate the fuel optimal control can be approached more closely.

The procedure is to take the expected characteristics of several of

these devices, of increasing cost, as the sequence of approximate

controls. Now the computer results give the overall system charac-

teristics with the sequence of devices, and permit a trade-off study

between control device cost and system performance.

E. NONLINEAR EQUATIONS

The procedure of this thesis can be carried out with nonlinear

differential equations of a rather general nature. However the length

of the calculations involved may become prohibitive. A general ap-

proach is outlined in Chapter VII. As indicated, a great deal of

flexibility exists in treating the nonlinearities. In Section F of

Chapter VII a simpler problem called Problem 3 is treated in which

the nonlinearities do not involve the state variables, and the compu-

tation is not so difficult in this case.

F. OTHER TERMINAL BOUNDARY CONDITIONS

1. In the cases studied, all the terminal conditions were fixed,

both the terminal time t and the final state vector 0. If any of the
1

state variables are not fixed at the given final time, then the cor-

responding costate variable is fixed at time t = t 1 as a consequence
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84
of Pontryagin's maximum principle. This reduces the number of

variables to be found. For example, in Problem l, let the first r

components of the state vector be fixed at time t = T, and define the

r vector {_..
--j

Eo, IO. _ •

--j

r

Define the costate fina..___lcondition vector _f and partition it.

where _f is now the known final boundary condition on the costate,

given by comment 8.1 below. Also, the fundamental matrix must be

partitioned.

Note :

At
e_

ejj: ejj 1

I

I

In each of these definitions it is understood that

l<_j<_r and r+l <l<n

The vector q(t)

vector _f: Let

is changed to account for the final costate

-A(t-T) AT
qf(t) = e -- b= e_-- q(t) (8.11)

and qf(t) =

Then the optimal control function is given by

u(t) = -dez[_(t)_f] = -dez[_(t)_j +q_(t)irf] (8.12)
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The corresponding state trajectory is

t

At /e--x(t 5 = _ [__ q(T)de z[ qf(m) w_f] dT]

0

(8.135

and the operator T(_.) is now defined on the space R .
J r

T

T(_j) = -% + [ejj "ejf] [_ -/

0

q(T) de z[ Cl'j(T)_j + q)(v5 w_._]•dT]
(8.14)

Just as in Chapter II,

approximate function u k

ator rk(__j ).

the deadzone function can be replaced by an

and the corresponding approximate oper-

Tk(Trj) = - Oj + [ ejj" eji] [ i- akWf(T)E f

T

/ q(T)u k [q_(v)Ef] dr1 (8.1 5)

and

T

Wf(T) = f

0

q(T) q'f(T)dT

The first derivative operator is an r x r matrix.

T (kl) (K j)

T

= - [ejj "ej_] [akWf(T) +/

0

(8.165

Finally, the recursion relation of Newton's method is

i+l i _(1) i -1 Tk(Trij)-[ ("" 5]
--j --j T k _

(8.175

Equation 8. 17 can be written out fully by substituting Eqs. 8.15

and 8.16 into it.
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Comment 8. I: The costate boundary condition on _

in general form by {see e.g., Athans and Falb, 4 P. 306).

i s given

aJ(x, u, t)

I Xr+ 1]

where x1 = "

x n

Using the penalty function of Chapter II, which does not depend on

the final state vector xf{T), yields

If none of the state variables are fixed at the terminal time tl,

then a complete set of costate final conditions is available. Under

these conditions Problem_ 1 or Problem 3 {of Chapter VII) has a

closed form solution. Let the final condition on the costate be

p(t I) = _f

Then the costate is

-A' (t-t I )

p(t) = e

For Problem 1, the optimal control is,

#

u (t) = -dez

and the state is,

Iq'(t)e_.A-'T_fl =- dez[_l_(t)_rfJ

At
x(t) = e-

t

- q(T)dez[q'(T)e_--A'T_rf]d_

0

For Problem 3, the optimal control is,

u (t) = v[_'(t, tl)Kf , t]

(8.1 8)

(8.19)

(s.zo)
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t

x(t) = !_(t, to) _ +f
t o

_)(t, T)K [ _'(T, tl)Kf , T] dT (8.21)

2. If the final time t 1 (or T) is not specified but is to be finite,

a change must be made in the procedure, since the integrals appearing

in the recursive scheme require fixed limits. There are various

ways of adapting the problem. One way is to choose a different inde-

pendent variable. If one of the state variables x.(t) is fixed at both1

t = t O and t = tl, and varies monotonically in between, that variable

can be chosen as the independent variable, and used as the basis of

the integrations.

Another approach is to treat the terminal time t 1 as an extra

variable in the interations of Newton's method. A rather general de-

velopment of this idea is given by Kelley in Chapter 6, Section 26 of
53.

Leitmann, m connection with the use of a gradient method. Nor-

mally, there will be a stopping criterion,

s(x(tl) , tl) = 0
(8.22)

A straightforward application of Newton's method yields the recursion

relation for t
I"

m 1

I 1i+l i 3 s (x(til) ' tll) " "

t 1 = tl - at11 s(x(tll )' ttl)

If the stopping condition does not contain the terminal time

explicitly or has a weak dependence on

used. Let

(8.23)

t 1

tl, a total derivative can be

Ds _ as as , dx_

Dt 1 at 1 + [ _-1__ dt7

Os(x(t 1), tl)'

ax(tl) "--f(x(tl)' u_(tl), t 1) + at 1

as(x(tl), t 1)
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where x = fix , u,t) is the system differential equation 7.1.

Eq. 8.23 is replaced by,

Then

1 : tl - _x(til) ' u(tl)' + _til

i i
• s(x(t 1), t 1) (8.24)

As an example, consider the problem of time optimal control to

a fixed point {usually the origin)• The most natural stopping con-

dition is the terminal value of the Hamiltonian.

H{X(tl),u_(tl),P(tl),tl) = 0 (8.25)

In this case, the stopping condition also contains the control variable

u(tl). However in satisfying the second necessary condition of the

Minimum Principle {minimization of the Hamiltonian} we normally

require

llH(x, u, p_, t)

au_(t) = 0

In addition, the necessary conditions lead to,

3H(x, u, p_., t)'

_xjt)

For simplicity, define

dx(t)
dt

- 0

H(tl) = H(X(tl),u_{tl) , P(tl),

Then the recursive relation 8.24 becomes,

t i ) (8.26)

i+l = t i
tl 1

H(til)

am(til)

ot'1

(8.27)



-142-

As an alternate stopping condition, consider the function

1 x' )x(t ) = 0
s(x(tl)) = 2"--(tl -- 1

Then the recursive relation 8.24 becomes,

(s.zs)

ti+l i
1 = tl-

1x'(til)x(til)2--

, i i i til)x (tl)f_(x(tl) , u(tl) ,

Finally, if the stopping condition is taken to be

(8. Z9)

n

s(x(tl)) = _xj(tl) = 0

j=l

then the recursive relation becomes,

n

xj(tl)

i+l i j=l
tl = tl - n

j=l

An initial guess is required for the terminal time t 1. Then the

rest of the problem formulation proceeds as outlined in Section 8.3

(and also Section 8.5 if the nonlinear plant is used).

Making changes in the procedure, or altering the problem itself

to ease the computational problem is really an art. There are other

ways in which the iteration for the terminal time could be handled,

and also many different ways of expressing the stopping function

s(x(tl) ,tl). There are also different and more general ways of formu-

lating the optimal control problem which could be considered, but

these are outside the range of this thesis.



APPENDIX A

NOTATION AND BASIC CONCEPTS

The purpose of this appendix is first to establish the notation and
nomenclature v of the thesis, and second to define certain control

theory notions and theorems. This is only a handy reference for con-

cepts needed in the main text, and is neither complete nor rigorous.
A more comprehensive development is found for instance in Athans

4and Falb.

1. NOTATION

Vector notation is used extensively. Some set theory concepts

are also used. As far as possible, the notation is similar to that in
recent control and systems books such as Athans and Falb 4 or Zadeh

98
and Desoer. Theorems, comments, etc. are numbered con-

secutively within each chapter. When referred to outside the chapter,

the chapter number is included. Thus Theorem 3.1 is the first

Theorem in Chapter III.

Column Vectors are indicated by underlined lower case letters,

and matrices by underlined upper case letters. The transpose of a

vector or matrix is indicated by an apostrophe after the letter.

Elements of a vector or matrix are indicated by single or double

subscripts on lower case letters.

For example, in two dimensions;

Iyxly2
B : [i 11 b121

21 b22J

Y' = [Yl Y2]

A list of the nomenclature used is found at the end of the appendices.
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If a square matrix B__ of order n

rank n), its inverse is denoted by

has nonzero determinant (is of

B__-I. Thus, given the linear re-

I ations,

By_= z (A. I)

and the condition that

det

one can solve for the vector y inEq. A.I.

(A.2)

y_ = B-Iz (A.3.)

The exponential matrix of a matrix _BB is defined to be

so also

oO

- 7. (B),.i
j=O

Bt I 1e-- = 7. (Bt) j

j=0

(A. 4)

The time derivative of a function is indicated by a dot placed over

it. Thus

dw(t 1)
-= (,v ) (A. 5)dt {t 1

indicates the time derivative of the function w{t) evaluated at time t 1"

The partial derivative of a function of one {possibly vector valued)

argument with respect to that argument is indicated by a superscript

(1). Thus
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_fO = f(1)()
_.

eo go ,

8u(q' (t)___) u(;
a(.£.'(t)__) - )(-q.(t)z) (A. 6)

When used with an operator in function space this is defined to mean

the Frechet derivative, as defined in Appendix B.

Notice that the tensor rank of the partial derivative depends on the

nature of the argument. For example, given a vector valued function

of a vector valued argument, say f(y), then _f(1)(y) is a matrix and

f(Z)(y) is a third order tensor.

Z. SETS

A se___t is a collection of mathematical objects related to each other

in some way. Upper case letters are used to denote sets. The state-

ment "s belongs to set S" is written

seS.

If the set S is composed of those elements

property S, the following notation is used.

For example if

than 1,

(A.7)

s which have some

S = {s:s has property S} (A.8)

S consists of all real numbers of magnitude less

s = {s: IsI < t}

If

S, then

S 1 is some other set, all of whose members are contained in

S _S
1

The statement S 1 = S 2 implies the two statements S 1 c S 2 and

S 2c S1" The empty set having no members is denoted by the symbol

6) • The direct product of two sets S 1 and SZ, written S 1 x S 2 is
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(Sl, s2) such that s I e S 1 and

S 1 x S 2 = {(Sl,S2) : s I e S 1 and Sze SZ}

A linear set is one for which the operations of addition and multi-

plication by a scalar are defined and satisfy the following conditions

for arbitrary members Sl, s2, and s3 of a set S.

0)

1)

z)

3)

(Sl+S2)cS and ClSleS , for all Sl, s2 and all real numbers

c i and cZ.

(Sl+S z) + s3 = s I + (Sz+S 3)

Sl+S 2 = Sz+S I

4)

5)

A null element

seS.

(Cl+Cz)S = ClS+CzS

C(Sl+S 2) = CSl+CS 2

6) (ClCz)S = Cl(CzS)

7) 1. s = s

The set of most use is the n

linear space.

vector, e.g.,

(D exists in S such that o. s = 6) for all

(A.9.)

element of which is an ordered n-tuple of real numbers.

An element of the set is written as an n

as

-s17

Szl
S = .

- jS

. n

The elements of

dimensional vector space Rn, each

This is a

s

can be made equal to a linear combination of the others.

dimensional

are called linearly independent if no one of them
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The real line is itself a space (i.e., the space RI). A closed

interval on the real line will be indicated by brackets, and an open

interval by parentheses. Mixtures are permitted, e.g.,

{O,T] -- {t:O< t <__T } (A.10)

Another important space is the space C of all possible continuous

functions defined on a closed interval [t O ,tl] of the real line. A

space consisting of n such functions will be called the space C
n

The space of functions with m continuous derivatives is called the

space C (m). For more information see any basic book on analysis,

such as Diendonn_. 25

3. NORMS

A concept of obvious importance in the study of convergence of

numerical methods is that of the distance between any two members

s 1 and s 2 of a set S written P(Sl, s2). There are many possible

ways of defining distance, but the most useful ones satisfy the metric

space axioms below

i P(Sl, S2) >_0 and P(Sl, S2)=0 implies

ii P(Sl, s2) = p(sz, Sl)

iii P(Sl, s2) _ P(Sl, s3) + P(S3, s2)

Sl=S 2

Once a distance function is chosen the set S becomes a metric

space.

If the set happens to be a linear set one can take advantage of

this by defining a more restrictive kind of distance function called a

norm written II s IJ which satisfies the normed space axioms given

below:

i lls II= 0 is equivalent to s = (D

ii llcsII--IcI.llsII

(A. ll)

iii llsl+szJI<_lls1II+ llszII

(A. 12)
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Since the space Rn, of primary use in this thesis, is a linear

space, norms are used as a measure of distance or of size.

An important type of norm in a finite dimensional space is called

the f norm. It is defined by,
P

PlI/P--- Ilsll = Isi[ (A.13)
P P

for p>_l

Three of these are used:

a) the l l norm

n

llsll : Isil
i--I

(A. 14)

b) the 12 or Euclidean norm

1/2
(A. ] 5)

c) the f or maximum norm

= max Isil (A 16}
l<i<n

When the 1 2 norm is used to norm the space Rn the result is

called Euclidean space. If n=3 this is an analog to the "physical

world. "

Comment A.I: In the case of a continuous function w(t), tc[0, T],

The L norm is defined by
P

Lp - IIw lip - Iw(T) IPd'r (A. 1 7)

p>]
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The L or supremum norm is often used.
0o

L = IIw(t)IIoo_ sup Iw(t)I (A. _8)

Comment A.2: The norm of a matrix is defined here as the norm

induced by the corresponding vector norm.

It follows that

II_Bs_II
lIBII- sup
- s/0_-KK

(A. 19)

n

= max Z IbijlliB II°° l< i < n

-- -- j=l

n

= max I [bij [
[["-B[[1 1 <_ j in i=l

Two useful relations now hold for any induced matrix norm.

4. ANAL YS IS

IIA_ II<__IIAII II_ II

A secluence si, i=1,2 ..... of elements of S is denoted by

Such a sequence is called a Cauchy sequence if for any e > 0

is an integer k(e) such that for all k I and k 2 greater than

one has a distance function for which,

(A. 20)

{s i } •

the re

k(c),

A sequence has a limit

p(s k , Sk2) < c1

s, denoted by

(A.21)

lim sk = s
k---o0

(A. ZZ)
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relative to a given distance function, if for any e > 0 there is an

integer k(e) =uch that for all k> k(e)

P(Sk, S) < e (A.23)

In numerical analysis such a sequence is said to converge to alimit.

Lemma A.l: A sequence is Cauchy if and only if it has alimit.

A necessary condition for convergence to a limit is that successive

members of the sequence become close, i.e., the condition

P(Si+l, si) < e (A. 24)

must be satisfied for e > 0.

Consider all possible sequences {si} in a space S which have

limits s. If all such possible limits lie within the space S, the

space is said to be complete. A complete, normed space is called

a Banach space. If a subset SIc S has the above property of con-

taining all its possible limit points it is a closed set.

Lemma A.2: The space R is complete with respect to any one
n

of the norms
P

Lemma A.3: In the space Rn,

limit with respect to any i norm,
P

f norms (for p > l).
p

The open sphere or neighborhood about a point

S ).r(S0

if a sequence converges to a

it converges with respect to all

s o is the set

Sr(So) : {So: [Is0-s I[< r} (A. 25)

The closed sphere is denoted by Sr(SO)

If each member

Sr(Sl)CSl, then S 1

r(SO)= {s o: Ilso-S II i r } (A. Z6)

s 1 of a set S 1 is the center of a neighborhood

is called an open set.
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5. STATE EQUATIONS

Given that the behavior of a given system can be modelled by a

set of differential equations, there are still many ways in which the

variables can be chosen and the equations written. In this thesis a

set of first order differential equations, called the (vector) state

equation is used.

= f(x_(t), u_(t), t) (A. 27)

The n dimensional vector function x(t) is called the state vector.

The implicit dependence on time will sometimes be omitted, e.g.,

:k = f(x• u, t).

Assumption A.I: The elements of the state vector are inde-

pendent. This is equivalent to requiring that the dimension n of

the state space be as small as possible.

A knowledge of u(t) for t¢(t0,tl] written u(t0• plus the• tl ],

initial value of the state x(t0) is sufficient to determine the state

x(t) for tc[t0, tl]. In accordance with this we define the transition

function ¢(t,u (to, tl],X(to) ) such that

x(t) = ¢(t, u(t0, tl], x_(t0) )

The state equation is called linear if it is of the form A. 29, i.e.,

linear in both the state and the control

(A. 28)

___.(t) = A(t)x(t) + B(t) u_(t) (A. 29)

The state equation is called linear time-invariant if it is of the

form A. 30.

__.(t) = A x (t) + __Bu(t) (A.30)

In this thesis a scalar control is used with alinear• time-

invariant system.

5¢(t) = Ax(t) + b_u(t) (A.31)
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Given the linear equation A. 29 and the initial state x(t0) , the

fundamental solution is given by,

t

x(t) = qb(t, to) X(to) + _(t, to) f ._-I(T

0

, to) B(T) U(T) dT (A. 32)

_(t, t0) is the fundamental matrix, the unique solution of the matrix

equation

_(t, to) = A(t)_(t, to) (A. 33)

subject to

.__(t0, to) = I

If the system is time invariant, the fundamental matrix becomes the

exponential matrix. In this case one sets tO = 0 without loss of

generality.

00

A t _ 1 (_At)k._.(t, 0) = e_. _ _ (A. 34)

k=O

Then the equation A.30 has the fundamental solution A.35, with

=

t

__ +f A(t -T)bx(t) = eats_ e-- U(T) dT

0

(A. 35)

6. REACHABILITY AND CONTROLLABILITY

Usually the control variable u(t) is required to lie in a given

closed subset U t of R k at each time t. If u(t)¢Ut, then u(t) is

allowable at time t. Define the function space of all allowable control

functions ._t0,tl] as U(t0, tl ] . That is, u(t0, tl] ¢ U(t0, tl ] means

u(t) is an allowable control for all t¢(t0, tl].
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A state x(tl)

there is a function

is reachable at time

u (to, tl ] c U(t0, tl ]

t 1 from the state x(t0)

such that

if

x(t 1) = _(t 1 , K(t0, tl]' x{t 0) )
(A. 36)

The set_ of all reachable states at time tl, R(tl,U(t0, tl ],x(t0)),

is the subset of Rn which consists of all the states _x(tl) that are

reachable from x(t0) in (t l-t0) seconds using any allowable con-

trol function, i.e.,

R(tl' U(t0, tl]' x(t0)) = {x(tl):x(t 1) = ¢{t 1, -_{t0, tl]' x(t0))

for some

u(t 0,t 1] c U(t0, tl ] } (A.37)

The set of all reachable states consists of all those reachable at

any finite time t>_t o .

If there is a piecewise continuous function u 1 such that0, t 1]

__(t 1 , U_l x(t0)) = 0
(t0, tl] '

for some
tI >__to

CA.38)

then the state x(t0) is controllable at t 0.

If every state x(t0) is controllable for every time to, the

system is completely controllable (or just controllable).

Given the linear, time invariant system A.30 the condition for

controllability takes a simple form: Define the controllability matrix

G, whose k th column is the vector A k'lb.

G = /[b AZb... 1 (A. 39)
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The condition for controllability is then

det _G / 0

7. THE MINIMUM PRINCIPLE

The theorem is stated only for the fixed time, fixed end point

problem considered in this thesis. More general formulations are

84 4
given in Pontryagin, et al. or Athans and Falb.

Given the fixed time, fixed end point plant of Chapter II,

&(t) = _f(x_..(t),u_(t),t)

x(t0): £

x(tI)= 0_

t fixed
1

and a cost functional of integral type.

tl
I"

J(x_(t),u_(t),t) = J L(X(T), U_(T),T)dT

to

assume the set of allowable controls is not time varying.

u(t) c U for all tc [to, tl]

Assume that each element of

a) the functions

L(x, u__t)

b) the vectors

8f

f(x, u, t), -_-

c) and the matrix

af

aL (x, u, t)and -_- __

(x, u,t), 8L (x_ u__,t)

ax (x_,u_,t)

(A. 40)

(A. 42)

(A.41)
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is continuous on the subset Rn x U x(tO,tl) of its domain space

Define the costate vector p(t) and the Hamiltonian

H(x(t), u(t), p__(t), t) such that

H(x(t), u(t), p(t), t) = L(x(t), u(t), t) + p'(t) f(x(t), u_(t), t) (A.43)

and the canonical (or Hamiltonian) equations are,

_:(t) 8H
_ _ Og (x, u_,p_, t) = f(_5, u_, t)

(A.44)

_(t) - 8Hsx(x,u,p,t)__ = - "_x_)L(x,u,t)__ - ( _-xaf (x, u, t))'p_

-I.

Let u'(t) be an allowable control such that the corresponding

trajectory x_*(t) begins at the point _. at time t O and is at the point

0_ at time t 1.

Theorem A.I: In order for uF(t ) to be optimal, it is necessary

that there exist a costate function _*(t) such that:

a) p_*(t) corresponds to u_*(t) and xJ(t) as a solution of

the canonical equations.

b)

:k (t) OH (x-(t),p (t), u (t),t)- _ _
vi.2

__*( aH * p_*( *t) = - 8-'_" (x (t), t),u_ (t),t)

for all te[t0,tl] the Hamiltonian has an absolute

minimum as a function of u(t) over U. That is

(A. 45)

• • , p*H(x(t),_u*(t),p_.(t),t)_< H(x(t),_ u(t), (t),t) for all u(t)eU

(A. 46)



APPENDIX B

NEWTON'S METHOD IN FUNCTION SPACE

The purpose of this appendix is to define some basic notions in

function space, and to present some results on Newton's method.

For more general and complete treatments see e.g., Kantorovich

and Akilov, 49 Kolmogorov and Fomin, 59 the paper by Moore in

Anselone, 2 or the chapter by Antosiewicz and Rheinbolt in Todd. 3

1. FUNCTION SPACE

Consider an ordinary function g(t). This is a mapping from R

into R1, written g(t) : Rl-*K I A set of such functions can be con-

sidered as a space G of functions, or a function space. Then each

element of G is a function gJ(t). _ The space C defined in Ap-

pendix A.Z is an example of a function space. One could equally

well have a space each element of which is a vector function, i.e.,

l_{t) : R 1 -*Rm. Or the argument of each element could be a vector

., Finally, using the function space Galso, i. e _.(y) : RI--.-R m.

one could define a functional on the function space.

Example : let J(u(t))

t 1
t,

=J lu( -)ld 

t o

Then J is a functional, such that,

5 :U-_R I

A superscript index will be used to denote a particular element of

the set, in order to agree with the notation used in this thesis for
Newton' s method.

-157-
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The definitions of metric space, linear space, normed space,

and convergence given in Appendix A apply equally well to function

spaces. An example of a norm in the space C of continuous functions
is the L norm defined in Section A. 3.

P

2. DERIVATIVES

The derivative of an operator in function space is defined in a

way rather analogous to the derivative of an ordinary function in Rl"
The first derivative is needed to carry out Newton's method.

Let Y and Z be two Banach spaces. Let P(.) be an operator

mapping an open subset Yl of Y into a subset Z l of Z. Let y0 be
0

a fixed element of the subset YI" Then y e Yl _ Y" Suppose there
exists a linear operator P(1)[y 0] (.) such that for every y c Y

= lp(1)[y0] (y) A lira _ {p(y0 + ey) - p(y0)} (B. I)
6-_ 0

Then the linear operator p(1) [y0] (.) is called the derivative of the

operator P evaluated at the element y0. This derivative is often

called the weak or Gateaux derivative, and the element p(1)[y0] (y) is

called the Gateaux differential. If in addition the convergence is uni-

forn_ for all y 6 Y with IIYll = I, then the operator P is differentiable

at the element y0. In this case the operator p(1) is called the strong

or Frechet derivative (or sometimes just the derivative for short).

In Theorems B. I and B.Z on the convergence of Newton's

method the second derivative of an operator P(') is used. This is de-

fined quite naturally as the derivative of the first derivative operator

(when this operation exists) and is a bilinear operator. Suppose there

exists a bilinear operator I=(Z)[ y0] (..) such that for every v, w, 6 Y

P(a)[y0](v,w) = lim l-l- {p(1) [y0 + e w]v - p(1)[y0] v}
6--_0 6

(B.Z)

The bilinear operator p(Z) [y0](., .) is called the weak second

derivative of the operator P(.) evaluated at the element y0. If, in

addition, the convergence is uniform for all v, w, E, Y with

llv II= llwll = I, then the operator ID(.) is twice differentiable at the

element y0. p(Z)[y0](., .) is then called the strong second derivative

(or sometimes simply the second derivative).
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Note that the operator P(1)[y0 + c w] (.) above is the first

derivative of the operator P, evaluated at the element y0 + ¢ w. The

operator p( l)[ y0] (. ) is the first derivative of the operator P evaluated
0

at the element y

The norm of the second derivative operator P(2)[y O] is defined

ass

IIP(g)[y0]II = sup

11vII: 1
IIw If:i

IIp(2)[yO](v,w)ll

3. NEWTON'S METHOD

Assume the same operator P(') as in Section B.2, and suppose

that the zero element ® is part of the subset Z1. That is, that

#

there exists an element y ¢ Y1 (a zero of the operator P) such that

P(y'} = O (B. 3}

Suppo s e,

YI" Let y0 be an element near y such that y0¢ YI"

0
expansion about y yields

O = P(Y*) = p(y0) + p(1)[y0](y':'=y0) + r

where r represents the higher order terms.

Assume the first derivative operator p(l)[y0](. )

denoted by [p(1)[y0]]-l(.). Afirst order estimate of y*

tained from Eq. B.4 by dropping the higher order terms.

* 0 11[y _y _ [pC y0]]-lpCy0)

For convenience define

FO : [p(1)[yO]]-I

Newton's method consists of applying the estimate

{yi}.

further, that P(. ) has a continuous first derivative in

A Taylor series

recursively to generate a sequence of elements

1 0
Y = Y _tO p(yO)

2 1 1

y = y - F 1 P(Y )

(B.4)

has an inverse

can be ob-

(B.5)

(B. 6)

(B.5)
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and in general, at the ith step

i+l i
Y = Y _Fi p(yi)

The sequence of elements {yi} is said to converge if

i .i.-r

lira y = y
i--_ oo

Comment B. I: If the operator P(') is a real function of a real

argument (an ordinary function), then Eq. B.7 becomes

i+ 1 i p(yi)

Y = Y- p(1)(yi)

which leads to Newton's method in its ordinary form (also called the

Method of Tangents).

Comment B.2" For completeness, the modified Newton's

method is included here. If a simpler recursive scheme is desired,

one can compute the inverse first derivative operator F only once

and keep using the original one F 0 . This leads to the recursive

relation

i÷l "
Y = yl_F 0 p(yi) (B. 9)

Equation B.9 involves less computation than Eq. B.7, but the rate of

convergence is generally slower, being usually exponential in naIure.

4. SUFFICIENT CONDITIONS FOR CONVERGENCE

There have been a number of theorems giving sufficient con-

ditions for the convergence of Newton's method, including recent

ones by Kalab 47 by McGill and Kenneth, 67 and by Kantorovich.48

The theorem by Kantorovich was found to be very general and power-

ful, and is the one stated below. Several forms of this theorem can

be found in Kantorovich and Akilov, 49 Chapter XVIII, together with

the proof which is somewhat lengthy and will not be reproduced here.

For convenience, the definitions of open and closed spheres

or neighborhoods are repeated here from Appendix A. 4.
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s r ly °) - {y: IIy-y°ll< to}
0

and

_rl (yO) = {y: Ily-yOII<_rl }

Let the operator

Y1 C Y and let the operator equation

P(y) = O

#
be given. The object is to find a solution y

i.e., a zero of the operator P('). A fixed element

starting guess (initial approximation).

P(y) be defined as before on an open set

(B. 10)

satisfying Eq. B. I0,
0.

y Is given as a

Theorem B. I: Suppose that:

I. The second derivative operator

exists and is continuous on the set YI"

2.

3.

,

pCZl[y]_..

The first derivative inverse operator F 0

llro PlY°)ll <-_o

UFoP(Z)[y]II<_13 for allye Y 1

exists

(B. 1I)

(B. IZ)

5. h : _o_<- i/z

6. Y1 m Sro (yO)

1 -_/1 - Zh

where r 0 =

(B. 13)

(B. 14)

lB. 15)

Then:

I. There is a solution y e Sr0

P(y";) = 0

Z. This solution is unique in the set

1+_/1 -2h

(yO) such that

Y flS
1 r

1

(yO), where

r : (B. 16)
I
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3. Newton's method converges to the solution y

. The rate of convergence is characterized by the inequality

i (2h) 21 (B 17)
Ily -y II<__ zi

It is actually sufficient to evaluate the second derivative opera-

tor only over the neighborhood S r (y0). The difficulty is that the
0

radius r 0 is not known in advance. However, one approach is to

choose a radius r and check to see if the conditions are fulfilled.

This leads to Theorem B.2, which is the form of the theorem given

49
by Kantorovich and Akilov. Those parts which are changed from

Theorem B. I are marked by bracketed numbers.

Theorem B.2: Suppose that:

I. The second derivative operator p(2)[y] (.,.)

exists and is continuous in the neighborhood Sr(y0 ). This obviously

requires

Y l::D Sr(Y 0 )

2. The first derivative inverse operator Y'0 exists.

3. IIr o PCy°) II£ 13o

4. IIF 0 p(Z)[y] II < i3 for all y ¢ Sr(Y 0) (B. 18)

5. h = _013 < 1/2

I -_/l- 2h

6. r>r 0 = 13

Then:

1. There is a solution y

P(y*) = o

• _r 0 (yO) such that

2. Let

r 1 = rain (r,

Then the solution y

1 + _/ 1 - gh _ (B. 19)

]
is unique in the sphere S r (yO).

1

#
3. Newton's method converges to the solution y
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. The rate of convergence is characterized by the
inequality

(2h) zi' i
IIy;"-y II<_

[32 i

Comment B.3: The inequality (B. 17) leads to the property of

"Asymptotically Quadratic" convergence. This means that the quan-
i

tity y -y is approximately squared at each step. Another way of

expressing this is by noting that the number of correct significant
i

digits in y approximately doubles at each step. "Asymptotic" means

that the property may not begin to appear until after some iterations

have already taken place.

Comment B.4: If the operator P(y) is not defined in the entire

neighborhood Sr0(Y0 ) two things can happen. First, although nearby

conditions point toward a solution y , there may be none within the

set Yl on which P(y) is defined. Second, even if the solution does
i

existp Newton's method may at some step y go outside the domain

of definition Yl and hence fail to reach the solution.

5. EXAMPLES

Normally one would expect from Theorem B. I that in a given
0

problem there would be a set of initial guesses y for which Newton's

method would converge (the Region of Convergence of Chapter II. ),

and other initial guesses for which it would not converge. The computer

examples studied appear to have this type of behavior.

In order to show some other types of behaviour which can re-

sult, three simple scalar examples are shown below.

Example 1

3
P(y) = y See Figure B. 1

The convergence theorem yields

h P(YO)P(g)[Y! = s}p (yO)36y=

[p(1)[yO ]-] z 9(y0)4 2/3
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p(y) = y3

8

6

4

2

Y
I 2

Fig, B.1 Example 1 For Newton's Method
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0
Clearly the convergence theorem can never be satisfied for any y ,

since even with Theorem B.2 the sup operation is over values of y on

both sides of y0. However, Newton's method

i+l i 113/ iy =y- y

0
converges for every initial guess y , though at a very slow rate.

Example 2

P(Y) : l Yl 1/2 sgn(y) See Figure B..2

The convergence theorem yields

which is rather similar to that found in Example I. However, Newton's

method yields

i+ 1 i yi iy : y- z I I sgny
i

: - y

0
So this example does not converge for any initial guess )r (except
0

y = 0). The second derivative becomes large much faster than

the first as the root is approached, so h is always > I/2.

Example 3

2
P(y) : y + ¢ See Figure B. 3

The convergence theorem yields

h : 1/2 + ¢

2(yO) 2

And Newton's method is

i+l 1 i

y = _y
6

i
2y

This function is very special because the sufficient condition of

Kantorovich is also necessary. For ¢=0, the theorem yields h = 1/2

and Newton's method just converges. The rate of convergence in this

case is only exponential (error is reduced by 1/Z at each step). For

any e > 0 there is no longer a root, h > 1/2, and Newton's method

finally oscillates instead of converging. For any c < 0 the theorem
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I

PCyl--lyl_g_cy)

2

I 2 3 4

I,),5,.'.

Fig. B.2 Example 2 for Newton's Method

P(y)= y2+E

i

5

4

0 I 2

Fig. B,3 Example 3 for Newton's Method
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yields h < 1/2 and Newton's method converges with the asymptotic

quadratic convergence rate showing up as IIy - y;: II becomes small.

As these examples show, the properties of the theorem do not

necessarily follow if the conditions are not fulfilled. Thus Newton's

method is not guaranteed to converge at a quadratic rate when it

converges. A few of the very difficult and impossible computer

examples illustrated this. Also Newton's method may not converge no

matter how close to the root one starts. As shown in Chapter IllB Sec. D,

for the class of optimal control problems studied this second type of

peculiar behaviour cannot occur. (Primarily since the second deri-

vative operator is bounded. )
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C MAIN PROGRAM

DIMENSIOH A(IO,IO),B(IO),Q(IO,IO1},POIIO),EMATIIO,IO),ATIIOtlO),TH
1ETA(IO),LETA(IO),Z(IO),BIGIIO),AIDENT(IO,IO),PERMU(IO),WI(IO,IO),C
12(10,10),W(lO,10),QSUP(lO)_EFETA(lO),EAT(lO,lO)

COMMON Q.PO,AgB,AT,Z_N,MgDELTA,DELSR,ETA,AIDENT,PERMU,L.WI.C2
1,W,ALPHA,ALPHI,ICON.EFETA,?NORM,ETNORM,ZETAtEAT

4 READ IO9,N,T

CALL RSCLCK

PRINT 109
PRINT 110,NtT
READ IOI,(ZETAII),I=I,N)
PRINT I]I,IZETA(1),I=I,N)

OO 2 I=I,N

READ IOI.(AII,J),J=IgN}
2 PRINT III,(AII,JI,J=I,N)

READ I01,IBII),I=I,N)

PRINT III,(BIII,I=I,N}

READ I02,EPS,AMAX,EPMTX,ALPT,M,ICHO,KPETA
PJ_INT I02,EPS.AMAX,EPMTX,ALPT,M,ICHO,KPETA
READ IOI,(THETA(II,I=I,N}

PRINT II],(THETAII),I=I,N}
DELTA=TIFLOATFIM)

CALL QMAT(QSUP,EPMTX}
PRINT 114

Do 10 I=I,N

10 PRINT lll.(ATII.JI,J=I.N)
CALL 'INIT (THETA,ICHO)

L=L

GO TO(6.7,8),L
7 PRINT 118

DO 15 I=I,N

15 PRINT 111.(W(I.JI,J:l,N)
GO TO 4

8 PRINT 119
GO TO 4

6 PRINT 117

DO 18 I=I,N
18 PRINT III_(WII,J),J:ItN)

PRINT 12a,ALPHA
PRINT 115

PRINT IIi,(POIII,I=I.N)
CALL STOPCL(I}
PRINT I03,1

CALL START(QSUP}
ICOUNT =-1
PRINT 116,ETA,ALPH1

IF(ICHO-3)3.21,21
q CALL ITER (EPS)

CALL STOPCL(1)

PRINT IO3,1

L=L

GO TO(II,12,13),L

13 PRINT 121
GO TO

]2 PRINT 120
DO 16 I:I,N

16 PRINT III,(C2(I,J),J=I.N)
11 P_INT 115

PRINT 111,(PO(1),I=1,N)

IF(XMODF(ICHO,3)-I}20,20,19
19 IF(ICON)20,20,17

17 CALL SSTRAJ
20 CALl_ CHGETA(ICOUNT,ALPT,KPETA}

PRINT 116,ETA,ALPH1
IF(ETA-AMAX)22,22,2_

22 IF(ICHO-3)3.21,21
21 CALL CKCON(H)

PRINT 123,H

IF(ICHO-6)23,3,3



24

25

TO0

i01

102

i03

109

I11

114

115

116
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ICON=-1

IF(H-.5)3,3,20

CALL STOPCL(1)

PRINT I03,1

IF(XMODF(ICHO,3)-l}4,25,25

PRINT 124

CALL ETABIG (EPS}

PRINT I15

PRINT 111,(PO(I},I=l,N)

GO TO 4

FORMAT(15,F15,8)

FORMAT (5E15.8)

FORMAT (IH ,E9.3,3E10,49315.)

FORMAT (80X7HTIME IS,16,19H 60THS OF A SECOND, )

FORMAT (IHI,20X 52HOPTIMAL CONTROL APPROXIMATION PROGRAM - MINIMUM

1 FUEL/I/}

II0 FORMAT (15,43H DIMENSION _TATE SPACE TERMINAL TIME = ,F12.4,9

IH SECONDS///)

cORMAT (8E15,8)

FORMAT (///49H THE NEGATIVE TIME EXPONENTIA_ _ kTRIX, E-AT, IS )

FORMAT (///23H THE COSTATE GUESS IS )

FORMAT (//22H IHE VALUE OF ETA IS ,E14,8,23H, [HE VALUE OF ALPH1

ITS ,E14.8)

117 FORMAT (///35H THE CONTROLLABILITY MATRIX IS, )

118 FORMAT (114H THE INVERSE CONTROLLABILITY MATRIX IS INACCURATE. OV

IERFLOW HAS OCCURRED. THE iNVERSE CONTROLLABILITY MATRIX IS, )

119 FORMAT (30X86HTHE CONTROLLABILITY MATRIX HAS NO INVERSE. $$$$ A

ITHING MUST BE WRONG WITH THE DATA. )

120 FORMAT (20X91H THE FIRST DERIVATIVE IS TOO FLAT AT THIS POINT, BUT

IWE-LL USE IT ANYWAY, THE C21 MATRIX IS )

121 FORMAT (30XBIH THE INVERSE OF THE FIRST DERIVATIVE FUNCTION FAILS

ITO EXIST AT THIS POINT. QIIIT }

122 FORMAT (///IOX24HA LINEAR nIECE, OF SLOPE, E14-8, 34HHAS BEEN REMO

IVED FROM THE CONTROL. )

123 FORMAT (//4OX61H THE CONVERGENCE THEOREM OF KAN_OROVICH YIELDS A

1VALUE OF H= ,E14.8)

124 FORMAT (//32H NOW [RY FOR THE EXACT SOLUTION. }

END

2O0

151

C

224

2 qO

270

SUBROUTINE QMAT(QSUP,EPMTX)

COMPUTATION OF THE MATRIX 2XPONENTIAL AND THE _ VECTORS

DIMENSION A(IO,IO),B(IO),Q;IO,IOI},POIIOI,EMATIIO,IO),AT(IO,IO},E(
110),D(10), AIDENT(IO,IO),PERMU(IO),Z(tO),WIIIO,IO},C2(IO,IO)

I),W(IO,IO},QSUP(IO),EFETA(IO),ZETA(IO),EAT(IO,IO}

COMMON Q,PO,A,B,AT,Z,N,M,DZLTA,DELSR,ETA,AIDENT,PERMU,L,WI,C2

1,W,ALPHA,ALPHI,ICON,EFETA,_NORM,ETNORM_ZETA,EAT

COMPUTE AT MATRIX AND ENTER IDENTITY MATRIX

DET=I.

DO 151 I=I,N

D_ 200 J=I,N

AT(I,J)=-AII,J)*DELTA

EMAT(I,J)=O.

EMAT(I,I)=I.0

COMPUTE MATRIX EXPONENTIAL

DO 300 I=I,N

DO 224 J=I,N

E(J)=EMAT(I,J}

G=I,O

DO 270 J=I,N

C=O,0

DO 250 K=I,N

C=(F(K)*(AT(K,J)/G))+C

D(J)=C

CONTINUE

G=G+I.0

DO 276 J_I,N

EMAT(I,JI=EMAT(I,J)+D(J)

"E(J)=D(J)
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276

C

_72

273

275

280

3O0

3O9

C

CONTINUE

TEST ON CONVERGENCE OF MATi_IX

IF(G-5,)2259272,272

DO 280 J=itN

IF(EMAT(I,J))273,275,273

RAT10=ABSFID(J)/EMAT(I,J))

IF(RATIO-EPMTX)275,275,225

AIDENT(IgJ)=Oo

EAT(I,J)=EMAT(I,J)

AIDENT(I,I)=I.

L=XSIMEQFI10,N,N,EAT,AIDENTtDET,PERMU)

IF(L-2)I99_I98,198

198 PRINT 108

108 FORMAT (38X62HHOW CAN THE FUNDAMENTAL

ISZ. TILT. )

C COMPUTE THE Q VECTOR FOR

199 DO 306 I=ltN

DO 301 J=I,N

301 AT(I,J)=O.

QSUP(1)=ABSF(B(1))

Q'I,I)=B(1)

306 AT(I,I)=I.

MI=M+I

00 313 K=2,MI

C ADVANCE TO THE NEXT TIME INCREMENT,

_0 312 I=I,N

_O 310 J=ltN

C=O,

DO 311 L=19N

311 C=C+AT(ItL)*EMAT(L,J)

3]0 D(J)=C

DO 312 J=I,N

312 AT(I,J)=D(J)

C COMPUTE THE O VECTOR

DO 313 I=I,N

C=0.

DO 309 J_I,N

C=C+ATII,J)*BIJ)

QII,K)=C

QSUP(1)=MAXIF(ABSF(O(I,K)),QSUP(1))

THE AT(I,J)MATRIX IS NOW E^P(-AT).

RETURN

END

EXPONENTIAL

MATRIX

EACH TIME-ENTER

FAIL TO HAVE AN INVER

IDENTITY MATRIX TO START

10

18

]9

20

SUBROUTINE INIT (THETA,ICHO)

COMPUTE THE CONTROLLABILITY MATRIX AND THE INITIAL COSTATE GUESS.
DIMENSION THETA(IO),W(IO,IO),Q(IO,IO1),PO(IO),A(IO,IO),B(IO),AT(IO

ltlO),WI(IO,IO),Z(IO),AIDENT(IO,IO),PERMU(IO),C2(IO,IO),ZETA(IO)

2,QSUP(IO),EFETA(IO),EAT(IO,IO)

COMMON Q,PO,A,B,AT,Z,N,M,DFLTA,DELSR,ETA,AIDENT,PERMU,L,WI,C2

1,W,ALPHA,ALPHI,ICON,EFETA,_NORM,ETNORMgZETA,EAT

COMPUTE THE CONTROLLABILITY MATRIX

DET=I,

DO 10 I=I,N

DO 10 J=I,N

W(I,J)=.r*(Q(I,1)*G(J,1)+Q(I,M+I)*Q(J.M+I))

DO 20 l=i,N

DO 19 J=I,N

DO 18 K=2,M

W( I,J)=W(I,J)+Q(I,K)*Q(J,KI

W(I,J)=DELTA*W(I,J)

WI(I,J)=W(I*J)

AIDENT(I,J)=0.

AIDENT(I,I)=IoO

L=XSIMEQF(IO,N,NgWI,AIDENT,DET,PERMU)

COMPUTE THE EQUIVALENT INITIAL CONDITION
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Q

II

12

C

13

22

24

3O

I00

I01

102

103

IF(ICHO-IO)I3,1,1

ICHO=ICHO-IO

MI=M+I

ARGA=O.

ARGB=O,

DO 2 I=],N

pC(1)=ZETA(1)

ARGA=ARGA+Q(I,I)*PO(1)

ARGB=ARGB+Q(I,MI)*PO(1)

PEN=O.

FB=O.

F=O.

I=(ABSF(ARGA)-I.)4,3,3

F=SIGNF(1.,ARGA)*DELTA

PEN=PEN+DELTA/2.

IF(ARSF(ARGB)-I.)6,5,5

FB=SIGNF(I.,ARGB)*DELTA

PEN=PEN+DELTA/2.

_0 7 I=I,N

ZETA(1)=.5*(Q(I,1}*F+O(I,MI)*FB)

DO 12 K=2,M

ARG=O.

DO 8 I=I,N

ARG=ARG+Q(I,K)*PO(1)

F=O.

IF(ABSF(ARG)-I.)11,9,9

F=SICNF(I.,ARG)*DELTA

PEN=PEN+DELTA

DO 12 I=_,N

ZETA(1)=ZETA(1)+O(I,K)*F

_RINT 102

PRINT 101,(PO(I),I=I,N)

PRINT 100

PRINT 101,IZETAII),I=I,N)

PRINT 103,PEN

TAKE CARE OF NONZERO THETA.

DO 23 I=I,N

C=0.

DO 22 J=I,N

C=C+AT(I_J)_THETA(J)

Z(I)=ZETA(I)-C

PONORM=0o

DL 30 I=I,N

D=0.

DO 24 J=I,N

D=D+WIII,J)_ZIJ)

PO(I)=-D
PONORM=PONORM+ABSF(D)

AI.PHA=-PONORM/10.

DO 31 I=I,N

PO(1)=PO(1)/ALPHA

RETURN

FORMAT(40H THE EQUIVALENT INITIAL STATE VECTOR IS, }

_ORMAT(IH ,EI4.8,7EIS.8)

FORMAT (//37H THE EXACT INITIAL COSTATE VECTOR IS, )

FORMAT (12H THE COST IS,EIS°8,14HUNITS OF FUEL, )

END
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i

C

12

13

15

C

16

SUBROUTINE START(QSUP)

CHOOSE AN INITIAL VALUE FO._ ETA AND FOR ALP1.
DIMENSION A(lO910),B(10),QI10,101),POI10),EMATI10,IO},ATI10,10),TH

1ETA(IO),ZETA(.IO),Z(IO), AIDENTIIO,IO),PERMUIIO),WI(IO,IO},C

12(IO,10),WII0,10),X(IO,IOI),CI(10),QSUPIIO),EFETA(IO)

COMMON Q,PO,A,B,AT,Z,N,M,DELIA,DELSR,ETA,AIDEN],PERMU,L,WI_C2

I,W,ALPHA,ALPHI,ICON,EFETA,_NORM,ETNORM,X

FUELF(X)=-DELTA/2.0_ITANHF,IX+I.)_ETA)+TANHFII×-I.)*ETA))

PNORM=ABSFIQSUPII)*PO(1)I

DO II=2,N

POFT=ABSF(QSUP(1)*POII))

PNORM=MAXIF(PNORM,POFT)

ETA=I./PNORM

NCW CHOOSE AN INITIAL VALUE FOR ALPHo FIRST FIND EFETA(1).

ARGA=O,

ARGB=O.

DO 12 I=I,N

ARGA=ARGA+QII,1)*PO(1)

ARGC=ARGB+Q(I,M+I)_POII)

Dn 13 I=I,N

EFETA(II=.5*(Q(I,1)*FUELF(ARGAI+Q(I,M+II*FUELF(ARGBII

DO 15 K=2,M

ARG=O,

DO 14 I=I,N

ARG=ARG+Q(I,K)*PO(I}

DO 15 I=I,N

EFETA(1)=EFETA(II+Q(I,K)*FUELF(ARGI

CALCULATE THE NORMS OF EFETA(1) AND ZII)

ETNORM=O,

ZNORM=O.

DO 16 I=I,N

ETNORM=ETNORM+ABSFIEFETA(1))

ZNORM=ZNORM+ABSF(Z(I))

ALPH=-ALPHA*ETNORM/ZNORM_(_,+ETA)

IF(ALPHA+ALPHIB_7_7

ALPHI=O,

RETURN

ALPHI=ALPHA+ALPH

RETURN

END

SUBROUTINE ITER(EPS)

FIND THE NEW COSTATE VECTOR

DIMENSION Q(IO,IO1),PO(IO),AIIO,IO),BIIO),AT(IO,IQ),ZIIO),CI(IO),C

12(10,10),PL(IO),AIDENT(10,_O),PERMU(10),POSI(10),WI(IO,10)

2,W(IC,10),QSUP(10),EFETAI!0),ZEIA(10),EAT(IO,10)

COMMON Q,PO,A,B,AT,Z,N,M,DZLTA,DELSR,ETA,AIDENT,PERMU,L,WI,C2

I,W,ALPHA,ALPHI,ICON,EFETA,_NORM,ETNORM,ZETA,EAT

COMPUTE THE CONTROL AND ITS FIRST DERIVATIVE

FUELF(X)_-DELTA/2,O*(TANHFI(X+I.)*ETA)+TANHFIIX-1,)_ETA))

FUDERFIX;=-DELTA/2,*ETA*(2.-(TANHFIIX+Io)*ETA))_*2-(TANHF((X-1,)*£

ITA))**2)

PRINT 127

ICON=O

DO 2 I=I,N

POSTII)=PO(1)

INITIALIZE FOR THE INTEGRALS OF ITERATION

ARGB=O.

ARGA=O,

DET=I.

DO 10 I=I,N

ARGB=Q(I,M+I)*POII) +ARAB

ARGA=Q(I,I)*PO(II+ARGA
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10

33

_2

4O

_4

35

I03

106

127

PL(1)=POCI)

PEN=.5*(ABSF(FUELF(ARGA}i+..BSF(FUELF(ARGB)))

DO 22 I=I,N

CZ(1)=.5*(Q(I,1}*FUELF(ARGA)+Q(I,M+I}*FUELF(ARGB))

DO 11 J=I.N

AIDENT(I,J):O.

C2(I,J)=.5*CQ(I.1)*QCJ,1)*FUDERF(ARGA)+QCI,M+I)*Q(J,M+I)*FUDERF(ARIi

IGR))

22 AID_NT(I,I)=I.0

C F'N_ THE INTEGRALS OF ITERATION

DO 23 K=2,M

ARG=O.

DO 2] I=I,N

21 ARG=ARG+Q(I,K)*POCI)

PEN=PEN+ABSF(FUELF(ARG))

30 23 I=I.N

CI(1)=CICI)+QII,K)*FUELFIARG)

DO 23 J=I,N

2_ C2(I,JI=C2II,J)+Q(I,K)*Q(J�K)*FUDERF(ARG)

C TAKE CARE OF THE CASE ALPH LESS THAN ALPHA.

IF(ALPHI)46,50.50

46 DO 47 I=I,N

DO 47 J=I,N

CI(I}=CI(1)+ALPHI_WCI*J)*P_(J}

47 C2(I.J)=C2(I,J)+ALPHI_W(I.J)

C NOW PUT "HE WHOLE EXPRESSION TOGETHER

50 L=XSIMEQI'(10.N,N,C2,AIDENT.DET*PERMU)

GO TO (54,55,32},L

_5 PRINT 106

54 DO 25 I=I,N

P5 CI(1)=Zil)+CI(1)

DO 26 I=I,N

DO 26 J=I.N

26 PO( I)=PO(1)-C2{ I,J)*CI(J)

C CHECK FOR CONVERGENCE

PON=O.

ERROR=O.

DO 30 I=I.N

PON=PON+ABSF(PL(I))

30 ERROR=ERROR+ABSF(PO(1)-PL(_))

ERROR=ERROR/PON

IF(ERROR-EPS)B4,B4,31

_I P[,INT IO0,(PO(1),I=I�N)

100 FORMAT (40X,5E]5.8)

ICON=ICON+I

IF(ICON-30)33,32,32
IF(ERROR-30,}I,32,32

ICO;4=O

Dq 40 I=I,N

PO(I}=POST(1)

RETURN

ICON=]

PRINT ]O!.PEN

eETURN

FORMAT (12H THE COST IS,EI6°8,16H

FORMAT (87X33HTHE FIRST DERIVATIVE

FORMAT (60X56HNOW

].THOD, )

END

UNITS OF FUEL. )

IS TOO FLAT. )

ITERATE ON THE COSTATE VECTOR, USING NEWTONS ME
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_URROUTINE CHGETA(ICOUNT.ALPTtKPETA)

TO CHANGE THE VALUE OF ETA AND OF ALPH

DIMENSION A(IO'IO)'B(IO},Q_IO.101).PO(IO),EMAT(10,10).AT(10.10).TH

1ETA(1U).ZETA(IOI,Z(10I,BIG_IO),AIDENTilO.10),PERMU(10).WI(10,IO),

IC2ilO,10),WllO,IOI,QSUP(1Oi.EFETAll0I.EAT(1G.IC)

COMMON Q'PO'A'B'AT'Z'N'M'D-LTA,DELSR,ETA,AID_NI_PERMU,L,WI,C2

1,W,ALPHA,ALPHI,ICON,EFETA,ZNORM,ETNORM,ZETA,EAI

FUELF(Xi=-DELTA/2,0*ITANHF:(X+I,)*ETA)+TANHFII×ol,)*ETA)I

IFIICON)I,I,6

PRINT 10

FCRMAT (38H WE DID NOT CONVERGE. NOW REDUCE ETA )
IF(ICOUNT)394,4

ETA=ETA/2.

ALPHI=.5*(ALPHA+ALPHI)

RETURN

ICOUNT=ICOUNT+I

I_(ALPH2)20922,22

IF(ALPH1123*21,22

ALPH=-ALPHA

ALPINC=-ALPH2

GO TO 23

KPETA=0

IF(ICOUNT-KPETA)999,8

ETA=ETA-.5**(ICOUNT-KPETA)*ETAINC

ALPH=ALPH-.5**ICOUNT_ALPINC

ALPHI=MINIF(0°,ALPHA+ALPH)

RETURN

IF(ICOUNT)7t2,2

ALPH=ALPH1-ALPHA

ICOUNT=O

ETAINC=ETA*((60./FLOATF(N*_¢3))**.25)

ETA=ETA+ETAINC

NOW CHOOPE A NEW VALUE FOR ALPH. FIRST FIND EFETA(I)e
ARGA=0,

ARGB=0,

DO 12 I:I,N

ARGA:ARGA+Q(I,I)*PO(1)

ARGB=ARGB+Q(I,M+I)*PO(1)

DO 13 I=I,N

EFETA(1)=-5*(Q(Itl)*FUELF(ARGA)+Q(I,M+I)*FUELF(ARGB))

DO 15 K=2,M

ARG=O,

DO 14 I=I,N

ARG=ARG+Q(IoK)_PO(1)

DO 15 I=I,N

EFETA(1)=EFETA(1)+Q(19K)*FUELF(ARG)

CALCULATE THE NORMS OF EFETA(1)

ETNORM:O.

DO 16 I=I,N

ETNORM=ETNORM+ABSF(EFETA(I))

ALPINC:-ALPHA*ETNORM/ZNORM::(I.+ETA)*ALPT

ALPH:ALPH+ALPINC

ALPH2=ALPHI

ALPHI=MINIF(0°.ALPHA+ALPH)

RETURN

F_ID
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126

127

SUBROUTINE SSTRAJ

TO COMPUTE THE CONTROL AND THE STATE SPACE TRAJECTORY,
DIMENSION Q(IO,101),PO(IO),A(IO,10),BIIO),ATIIO,10),Z(IO),CI(10)'C

12(10,10),AIDEN[(IO,IO),PERIIU(IO),WI(10,10),EMAT(IO,10),EAT(IO,10)

2,W(10,10),OSUPIIO),EFETAII0),E(IO),D(IO),XII0),ZETA(IO)

COMMON QQPO,A,B,AT,Z,N,M,DELTA,DELSi<,ETA,AIDENT,PERMU,L,WI,C2

1,W,ALPHA,ALPHI,ICON,EFETA,ZNORM,ETNORM,ZETA,EAT

FUELF(X)=-DELTA/2.0*ITANHF[I'X+I,)*ETA)+TANHFI(X-1,)*ETA))

ARG=0,

DO 1 I=I,N

×II)=ZETAII)

ARG:ARG+Q(I,1)*PO(I}

_RINT 125

PRINT 126

PRINT 127,ARG,(X(II,I=1,N)

MI=M+I

DO 7 K:2,MI

DO 2 I:I,N

XII):XII)+.5*BII)*FUELFIARG)

ARG:0,

_O 3 I=I,N

ARG=ARG+O(I,K)*POII)

O_RMU(1):O.

DO 3 J=I,N
PERMU(I):PERMU(I)+EAT(I,J)'_X(J)

DO 4 I=I,N

X(I):PERMUII)

X([;=X(I)+°5*B(II*FUELF(ARG)

POINT 127,ARG,(X(1)91=I,N)

R_TTURN

FORMAT(//5OX3OHTHE STATE SFACE TRAJECTORY IS,/)

FORMATI4X8H CONTNOL,gX2HX1,13X2HX2,13X2HX3,13XZHX4,13x2HXS,13X2HX6,1

1,13X2HXTI

FORMAT(IH ,E14o8,7E].5.8)

6Nm

SUBROUTINE CKCON(H)

D'MENSION Q(IO,IOI),PO(IO),A(IO,IO),B(IO),ATIIO,IO),Z(10),CI(IO)'C

]2(10,10),PL(IO),AIDENT(IO,IO),PERMU(IO),POST(IO)'WI (IO'IO)'CO(10)

2,W(IG,10),OSOP(IO),EFETA(Iu),CA(IO),CB(IO),C(10)'ZETA(10)'EAT(IO'IO)

I0)

COMMON Q,PO,A,B,AT,Z,N,M,DELTA,DELSR,ETA,AIDENT,PERMU,L,WI,C2

I,W,ALPHA,ALPHI,ICON,EFETA,ZNORM,ETNORM,ZETA,EAT

FUELF(X)=-DELTA/2,0*(TANHF((X+I°)*ETA)+TANHF(IX-I,)*ETA))

FUDERF(X)=-DELTA/2°*ETA*(2°-(TANHFI(.X+I°)*ETA))**2-ITANHFIIX-I')*E

ITA))**2I
FSDERFIX)=DELTA*ETA**2*(TANHF(IX+I,)*ETAI-TANHF((X+I,)*ETA)**3+TAN

IHFIIX-1,)*ETA)-TANHF(IX-I,:*ETA)**3)

FIRST COMPUTE THE FIRST DE;,IVATIVE OPERATOR

DET:I,

ARGA:O,

ARGB=O,

_O I I:],N

ARGA=ARG#+Q(I,I)*DO(1)

ARGB=ARGt+Q(I,M+I)*POII)

DO a I=],N

CI(1)=°5*(Q(I,I)*FUELFIARGA)+Q(I,M+I)*FUELFIARG_I)

DO 2 J=I,N

C2(I,J):.5*(Q(l,1)*O(J,1)*i UDERF(ARGA)+Q(I,M+I)*Q(J,M+I) *FUDhRFIAR

1GB))
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2 AIDENT(I,J)=O,
4 AIDENT(I,I)=I,

DO 7 L=2.M
ARG=O,

DO 5 I=l,N

5 ARG=ARG+Q(I_L)*PO(I}
DO 7 I=I,N

CI(I}=CI(1)+Q(I_L)*FUELF(A_G)
DO 7 J=I.N

7 C2(I_J}=C2(I,J}+Q(I_L)WQ(JgL}*FUDERF(ARG}
C TAKE CARE OF THE USE ALPHI NOT ZERO,

IF(ALPHI)6,8,8
6 DO 9 I=ItN

DO 9 J=I,N

CI(1)=CI(I}+ALPHI*W(19J)*PO(J)
9 C2(;,J)=C2(I_J)+ALPHI*W(19J)

C NnW GET THE INVERSE

8 L=XSIMEQF(10,N,N,C2,AIDENT,DET,PERMU)
GO TO (11,10,10),L

I0 PRINT I00
H=D,

RETURN

C NOW FIND THE SECOND DERIVATIVE OPERATOR,
l] ARGA=O,

ARGB=O.

DO 3 I=IgN

ARGA=ARGA+Q(I,I)*PO(I}

3 ARGB=ARGB+Q(I,M+I)*PO(I}
DO l_ I=],N
CA(I}=O,
CR(1)=O,

DO 12 J=lgN
CA(I)=CAfI)+C2(I_J)*Q(J_I)

12 CB(I}=CB_I)+C2(I,J)*Q(J,M+I)
DO 13 J=I,N

DO 13 K=I.N

CO(1)=,5*(ABSF(CA(1)*Q(J,I_*Q(K,1}*FSDERFIARGA))+ABSF(CB(I}*Q(J,M+
II}*Q(KgM+I}*FSDERF(ARGB)})

]3 C(1)=,5*(ABSF(CA(1)*Q(Jtl)*Q(Kgl)}+ABSF(CBII)*Q(J,M+I}_G(K_M+I})}
DO ]5 L=2,M

ARG=0,

DO" 20 I=I,N

20 ARG=ARG+Q(I_L)*PO(1)
DO 15 I=I,N
CA(I}:O.
DO 14 J=I,N

14 CA(I}=CA(1)+C2(I,J)*Q(J,L)

DO 15 J=I,N
DO 15 K=I,N

CC(I}=CO(1)+ABSF(CA(1)_Q(J,L)_Q(K,L)*FSDERF(ARG))
15 C(1)=C(1)+ABSFICA(1)*Q(J,L}_Q(K,L))

ANORM=O,
BNORM=O,

CNORM=0,

NOW PUT TOGETHER THE OPERATOR EXPRESSIONS,
D_ 16 I=I,N
Ci(1)=CI(1)+Z(1)

16 CA(1)=O,

DO 18 I=I,N
DO 17 J=I,N

17 CA(1)=CA(1)+C2(19J)*CI(J)

ANORM=MAXIF(ANORM,ABSF(CA(I}})
CNORM=MAXIF(CNORM,CO(I))



-180-

18 RNORM=MAX IF(BNORMgCII))

H=ANORM*BNORM*BIGIETAI

CNORM=CNORM*ANORM

PRINT 111

PRINT 110,ANORMgBNORM

PRINT 112,CNORM

RETURN

100 FORMAT(4OX7OH'THE FIRST

1GENCE ACrURATELY°)

I]0 FORMATI75X3E15°8)

111 FORMAT(75X37H GAMMA*TO

112 FORMAT (80X24HTHE LOWER

END

DERIVATIVE IS TOO FLAT TO CHECK FOR CONVER

GAMMA*T2 FN2}

BOUND FOR H IS ,E15,8)

2

110

FUNCTION BIGIETA)

IFIETA-.28)3,3,4

X=I°I3.*--.5-.62*ETA+2°*ETA**3

GO TO 5

X:I,I3,**,5*II°-EXPFI-5°*ETA))

TE=TANHF(2,*ETA)

DO 2I=196

Y=(X+TEI/II°+X*TEI

X=X+°25*((I.-Y**2)*(I°-3°*Y**2)+(1,-X**2)*(I°-3,*X**2))/(Y*(2.-3°*

1Y**2)*II°-TE**2)/(I°+TE*ETA)**2+X*(2,-3,*X**2))

PRINT 110,XgY

FORMAT (90X2EIS.8)
BIG=ETA**2*(X-X**3+Y-Y**3)

PRINT I10,BIG

RETURN

END
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